SITE ASSESSMENT REPORT FOR IWI SITE SUMMIT, COOK COUNTY, ILLINOIS

EPA Region 5 Records Ctr.

366832

Prepared for

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Emergency and Remedial Response Branch Region V 77 West Jackson Street Chicago, Illinois 60604

Prepared by

Weston Solutions, Inc.

750 East Bunker Court, Suite 500 Vernon Hills, Illinois 60061

Date Prepared	14 August 2002
TDD Number	S05-0205-006
Document Control Number	252-2A-ABZI
Contract Number	68-W-00-119
START Project Manager	Tonya Balla
Telephone No.	(847) 918-4094
U.S. EPA On-Scene Coordinator	Fredrick Micke

I-WO\STAR\\317\2.CVR\WPD 263-2A-ABZI

Weston Solutions, Inc.

Suite 500 750 East Bunker Court Vernon Hills, IL 60061-1450 847-918-4000 • Fax 847-918-4055 www.westonsolutions.com

14 August 2002

Mr. Fredrick Micke, P.E. On Scene Coordinator U.S. Environmental Protection Agency 77 West Jackson Boulevard, SE5J Chicago, Illinois 60604

Contract No.: 68-W-00-119 TDD No.:

S05-0205-006

DCN:

263-2A-ABZL

Subject:

IWI Site

Site Assessment Report, Revision 0

Dear Mr. Micke:

I:\WO\STAR1\31712.LTR.WPD

Weston Solutions, Inc. (WESTON_®) (formerly Roy F. Weston, Inc.) is pleased to submit three copies of the Site Assessment Report, Revision 0, for the IWI Site in Summit, Cook County, Illinois.

Should you have any questions or require additional information, please feel free to contact the undersigned at (847) 918-4000.

Very truly yours,

WESTON SOLUTIONS, INC.

fo7 Joseph Ruiz

START Associate Project Engineer

START Project Manager

Lorraine Kosik, START Project Officer, U.S. EPA, Region V(SE-5J) cc:

SITE ASSESSMENT REPORT FOR IWI SITE SUMMIT, COOK COUNTY, ILLINOIS

Prepared for

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Emergency and Remedial Response Branch Region V 77 West Jackson Street Chicago, Illinois 60604

Prepared by

Weston Solutions, Inc.

750 East Bunker Court, Suite 500 Vernon Hills, Illinois 60061

14 August 2002

Prepared by	Justa fi Unadol Joseph Ruiz START Associate Project B	Date 8/15/02
	Joseph Ruiz START Associate Project I	Engineer
	<u> </u>	-
Prepared & Reviewed by _	Furt Mill	Date 8/15/62
	Fonya Balla START Project Manager	, ,
Reviewed by _	Dian Geers	Date 7/15/02
	Dean Geers RHM START Program Manager	,,

I: WO'START'31712.CVR.WPD 263-2A-ABZI

TABLE OF CONTENTS

<u>Section</u>	Ī		<u>Title</u>	Page
1	INTE	RODUC	CTION	1-1
_	1.1		tives and Scope of Site Assessment	
	1.2		t Organization	
2	SITE	BACK	GROUND	2-1
	2.1	Site De	escription	2-1
	2.2	Site Hi	istory	2-1
3	ENV	IRONM	MENTAL INVESTIGATION PROCEDURES	3-1
	3.1		onditions	
	3.2	Sampli	ing Activities	3-3
4	ENV	IRONM	MENTAL INVESTIGATION RESULTS	4-1
	4.1	Soil Sa	ampling	
		4.1.1	Soil Analysis for Hazardous Waste Characteristics	4-1
		4.1.2	TAL Metals in Soil	
		4.1.3	PCBs and Pesticides in Soil	
		4.1.4	VOCs in Soil	
		4.1.5	SVOCs in Soil	
	4.2		ner Sampling	
		4.2.1	Container Sample Analysis for Hazardous Waste Characteristics	
		4.2.2	Container Sample Analysis for TAL Metals	
		4.2.3	Container Sample Analysis for PCBs	
		4.2.4	Container Sample Analysis for VOCs	. 4-5
5	THR	EATS T	TO HUMAN HEALTH AND THE ENVIRONMENT	. 5-1
6	CON	CLUSIC	ONS AND RECOMMENDATIONS	. 6-1
	6.1	Conclu	isions	. 6-1
	6.2	Recom	mendations	. 6-2
7	DEEL	DENC	EC.	77 1

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>
2-1	Topographical Site Location Map
3-1	Detailed Site Map
3-2	Room 1 Detail
3-3	Room 2 Detail
3-4	Room 3 Detail
3-5	Room 4 Detail
3-6	Room 5 Detail
3-7	Upstairs Detail
3-8	Stack Building Detail
3-9	Area West of Room 5 Detail
3-10	Area West of Stack Building Detail

LIST OF TABLES

<u>Table</u>	<u>Title</u>
3-1	Container Inventory
3-2	Sump Inventory
3-3	Other Environmental Concern Inventory
4-1	Surface Soil TCLP Metals Sampling Results
4-2	Surface Soil TAL Metals Sampling Results
4-3	Surface Soil Volatile Organic Compounds Sampling Results
4-4	Container TCLP Metals Sampling Results
4-5	Container TCLP Volatile Organic Compounds Sampling Results
4-6	Container Other Characteristics of Hazardous Waste Sampling Results
4-7	Container TAL Metals Sampling Results
4-8	Container Volatile Organic Compounds Sampling Results

Section 1 Revision: 0

Date: 14 August 2002

Page: 1-1 of 2

SECTION 1

INTRODUCTION

On 14 June 2002, United States Environmental Protection Agency (U.S. EPA) On-Scene

Coordinator (OSC) Fredrick Micke and the Weston Solutions, Inc. (WESTON®) Superfund

Technical Assessment and Response Team (START) initiated a site assessment at the IWI site

located in Summit, Cook County, Illinois. The site assessment activities were conducted under

Technical Document Directive (TDD) S05-0205-006. Sample analyses were conducted under

analytical TDD S05-0206-011.

1.1 OBJECTIVES AND SCOPE OF SITE ASSESSMENT

The objective of this site assessment was to gather information to characterize the current state of

the IWI site. Specific objectives of this site assessment were as follows:

• Determine if soil contamination is present on-site;

• Determine the nature of the contents of on-site drums and chemical totes;

• Determine the potential threats to human health and the environment;

Evaluate the need for further site characterization, remediation, or removal.

To accomplish these objectives, the site assessment activities consisted of collecting soil, drum, and

chemical tote samples from the site and selectively analyzing the samples for organic and inorganic

parameters and characteristics of hazardous waste.

1:\WO\STAR\T\317\2.S-1.\WPD 263-2A-ABZI

Site Assessment Report IWI Site Section 1 Revision: 0 Date: 14 August 2002 Page: 1-2 of 2

1.2 <u>REPORT ORGANIZATION</u>

This site assessment report is organized into the following sections.

- <u>Section 1-Introduction</u> The Introduction provides a brief description of the objectives and scope of the site assessment activities.
- <u>Section 2-Site Background</u> The Site Background section provides a site description, the site history, and a summary of previous investigations.
- <u>Section 3-Environmental Investigation Procedures</u> This section describes the methods and procedures used during the site assessment activities.
- <u>Section 4-Environmental Investigation Results</u> The Environmental Investigation Results section describes the results of sample analysis.
- <u>Section 5-Threats to Human Health and the Environment</u> This section identifies conditions that warrant a removal action under the National Oil and Hazardous Substances Contingency Plan (NCP).
- <u>Section 6-Conclusions and Recommendations</u> The findings of the site assessment activities are summarized and recommendations for further activities are provided.
- <u>Section 7-References</u> A list of references utilized in compiling the report is provided.

E-WO\STAR \\31712.S-1.WPD 263-2A-ABZI

Section 2 Revision: 0

Date: 14 August 2002

Page: 2-1 of 2

SECTION 2

SITE BACKGROUND

2.1 <u>SITE DESCRIPTION</u>

The IWI site is located at 7738 West 61st Place in Summit, Cook County, Illinois. The geographic

coordinates of the site are 41°46'47" north latitude and 87°48'51" west longitude. The approximately

1.7-acres, square-shaped site is bounded to the south by 61st Place and in all other directions by

private property. A chain-link fence surrounds the site, with a hole in the fence along the northwest

side of the property and a temporary fence at the south end of the property (Figure 2-1). There are

three main buildings within the site's boundaries. The largest building is approximately 45,000

square feet and consists of five separate rooms and several floors. The stack building is

approximately 5,000 square feet. The building known as building three, located between the stack

building and the water tower, is approximately 1,000 square feet. Other key features on-site include

dilapidated buildings, large debris piles, an old building foundation, above-ground storage tanks

(ASTs), 55-gallon drums, and chemical totes.

The site is situated in a mixed area of both industrial and residential use. A residential neighborhood

is located directly south of the site across 61st Place. A recreational-use water body is located within

a 1/4 mile of the site, and the Chicago Sanitary and Ship Canal is located less than 3/4 mile to the

west. The Des Plaines River is located approximately 1 mile west of the site (Figure 2-1).

2.2 SITE HISTORY

According to the Village of Summit Building Code Enforcement Officer, Mr. Jeffrey Duley, IWI,

Inc., also known as Itasco, was owned and operated by Mr. Glenn Wellman. Operations at the site

included chemical tote, drum, and pail reconditioning and processing. The original source(s) of the

I:\WO\START\31712.S-2.WPD 263-2A-ABZI

Section 2 Revision: 0

Date: 14 August 2002

Page: 2-2 of 2

on-site containers is unknown. According to Mr. Duley, operations ceased at the site in 1996, and

Mr. Wellman has since passed away.

Mr. Duley noted the difference in elevation of the adjacent property to the west. Mr. Duley said that

this elevation difference was a result of backfilling done by the adjacent property owner because

runoff from the IWI Site was crossing the property boundary and leaving stains and odors in the

adjacent parking lot.

According to records from the Illinois Environmental Protection Agency (IEPA), a fire occurred at

the facility on 14 August 1985. The IEPA's emergency response unit responded to this fire and

conducted sampling to determine if a hazard was present. A Freedom of Information Act (FOIA)

request has been sent to IEPA to retrieve further information about the sampling done following the

abovementioned fire.

In addition to the August 1985 fire, another fire occurred in May 2002. U.S. EPA responded to this

fire, which consumed the two office buildings and severely damaged sections of the other buildings.

The Village of Summit ordered the severely damaged office buildings to be demolished. M&R

Wrecking, of McCook, Illinois, conducted the demolition activities. The debris from this demolition

remains on-site.

1\WO\STAR I\317\12.S-2.WPD 263-2A-ABZI

Section 3 Revision: 0

Date: 14 August 2002

Page: 3-1 of 4

SECTION 3

ENVIRONMENTAL INVESTIGATION PROCEDURES

On 24 and 25 June 2002, a START Investigation Team consisting of OSC Fredrick Micke (U.S.

EPA) and START members Mr. Rick Mehl, Mr. Joseph Ruiz, and Mr. Greg Gehrig (WESTON)

conducted a site assessment of the IWI property. The site assessment scheduled collecting samples

to determine if hazardous materials were present on-site and to determine if those materials posed

a significant threat to human health or the environment. Specific site assessment observations and

activities are detailed below.

3.1 <u>SITE CONDITIONS</u>

At the time of this investigation, access to the site was unrestricted. The chain-link fence bordering

the site to the north had a hole cut in it that was approximately 4 feet wide. The temporary fencing

located on the southern border of the site adjacent to 61st Place is secured with wire ties and can be

easily opened. There is evidence of trespassing including graffiti throughout the site. Furthermore,

many of the site buildings were significantly damaged by the fire and were inaccessible because of

severe roof or floor damage. Photographs of the site are provided in Appendix A, and site physical

conditions are presented in Figure 3-1.

During the initial site reconnaissance a MultiRAE photoionization detector (PID) and a GM Pancake

were used to determine if either organic or radiological contamination was present inside the site

buildings. Both PID and radiological readings were zero.

The main building was determined to have an accessible second floor. Upon observing this second

floor room, it was determined that the floor damage was sever enough to prevent full exploration of

the second floor. Approximately 41 containers were noted on the second floor, including two

fiberglass ASTs (15,000 gallons each), one 500-gallon AST, one 275-AST, and 27 55-gallon drums.

I:\WO\START\31712.S-3.WPD

263-2A-ABZI

IWI Site Section 3

Revision: 0 Date: 14 August 2002

Page: 3-2 of 4

Also observed during the initial site reconnaissance was the large number of containers that were

leaking, many containers had an oily substance near the top and sides of the container. The leaking

containers of the most concern are located in the drum storage area. These drums are stacked

precariously on top of each other, and the drums are in very poor condition. In addition, a stream

of black oily liquid with a heavy sheen flows from the entryway to this area to the drainage ditch that

is located along the western boundary of the site. Mr. Duley was told that the owner of the western

adjacent property had to raise the elevation of his parking lot in order to prevent this runoff from

staining his property.

Approximately 170 fifty-five-gallon drums were identified during the site assessment. Many of these

drums were inaccessible because they were stacked or because they were unstable due to their

deteriorated condition. Many of the drums were leaking or were improperly sealed. Drums located

in the drum storage area south of room five were leaking and were draining into the drainage ditch

to the west (Figures 3-1 and 3-6). Furthermore, chemical totes of varying capacity were also

encountered on-site. The capacity of these totes varied from 345 to 600 gallons. The majority of

the cylindrical or square totes, however, were 345-gallon steel totes.

In addition to the on-site drums and totes, several ASTs were also identified. The ASTs ranged in

size from 275 to 20,000 gallons. A list of all containers observed, their approximate volume, their

approximate location, and the amount of material contained in each is presented in Table 3-1.

In the stack building, a room containing a dried sludge floor was encountered (Figure 3-8). A

loading chute extends into the room and was probably used for dumping sludge into the room.

In addition to containers, the site was littered with large amounts of debris. The debris piles

contained demolition debris from the demolition of the two buildings following the May 2002 fire.

Approximately 1,000 square feet (ft²) of 3/8-inch transite panels were located in one of the debris

piles. These panels were severely damaged and friable. During the initial site walk on 14 June 2002,

I:\WO\START\31712.S-3.WPD

263-2A-ABZI

Section 3

Revision: 0 Date: 14 August 2002

Page: 3-3 of 4

there was on-site ponding; a bright-green tint was noted in the water. On-site sumps are detailed in

Table 3-2, and other environmental concerns noted during the site assessment are detailed in Table

3-3.

3.2 **SAMPLING ACTIVITIES**

Twelve samples from drums and chemical totes were collected utilizing Level B personal protective

equipment (PPE). Many of the drums and totes were located in areas with significant structural

damage or were stacked in a precarious manner. The drums and totes selected for sampling were

chosen based on accessability. Soil sample collection locations are shown in the room detail figures

(Figures 3-5 through 3-10). Sample collection procedures are described below.

A total of three investigative surface soil samples were collected. These soil samples were collected

utilizing Level D PPE. A physical description of conditions at each sample location follows:

• IWI-13 - This sample was collected from the drainage ditch in the area where

significant staining from the drum storage area was observed.

IWI-14 - This sample was collected from the drainage ditch directly north of sample

IWI-13. The drainage ditch appeared to have a flow direction of north to south.

IWI-15 - This sample was collected in the area located east of the railroad car AST.

Staining was observed in the area, and a strong odor was noted.

Soil samples were collected with disposable plastic scoops. A grab sample was first collected for

volatile organic compound (VOC) analysis and was packed in Encore samplers. The remainder of

the sample was packed in a 32-ounce, clear, wide-mouth, glass jar with a Teflon-lined lid. Nitrile

gloves were worn during sample collection and were changed before each subsequent sample was

taken. Soil samples were collected from approximately 0 to 3 inches below ground surface (bgs).

E\WO\START\31712.S-3.WPD 263-2A-ABZI

IWI Site Section 3

Revision: 0 Date: 14 August 2002

Page: 3-4 of 4

Container samples were collected either with drum thieves or with disposable plastic scoops and

were placed into clear, wide-mouth, glass jars with Teflon-lined lids. The method of collection

depended on the consistency and viscosity of the material in the container. When container contents

were mainly liquid, VOC samples were collected in separate vials pre-preserved with hydrocloric

acid (HCl). Figures 3-2 through 3-8 show the details of individual rooms within the site buildings

as well as container sample locations.

All soil samples were analyzed for Target Analyte List (TAL) metals, VOCs, semivolatile organic

compounds (SVOCs), pesticides, polychlorinated biphenyl compounds (PCBs), Toxic Characteristic

Leaching Procedure (TCLP) organic compounds (VOCs, SVOCs, and pesticides), and TCLP metals.

All container samples were analyzed for TAL metals, TCLP organic compounds (VOCs and

SVOCs), TCLP metals, PCBs, reactive cyanide, reactive sulfide, pH, and flashpoint, and a paint

filter analysis was also conducted. In addition, container samples IWI-1, IWI-2, and IWI-3 were also

analyzed for VOCs, because the contents of these containers were mainly liquid.

All samples were labeled and preserved in coolers with ice immediately after sample collection. At

the end of the sampling period, samples were packed, transported, and relinquished under chain of

custody to PDP Analytical Services, in The Woodlands, Texas, for analysis.

Spent personal protective equipment (PPE) and contaminated debris generated during the sampling

event were containerized in plastic bags, labeled, and stored on-site.

f:\WO\START\31712.S-3,WPD 263-2A-ABZI

Site Assessment Report IWI Site
Section 4
Revision: 0
Date: 14 August 2002

Page: 4-1 of 5

SECTION 4

ENVIRONMENTAL INVESTIGATION RESULTS

Three investigative soil samples were collected during this investigation and were shipped to PDP Analytical Services, in The Woodlands, Texas. Twelve investigative container samples were collected from drums and chemical totes and were delivered to the same laboratory. Analytical parameter selections for each sample are outlined in Section 3.2. Analytical results for these analyses were compared to regulatory criteria levels. Results of the comparison are presented in Tables 4-1 through 4-8. Three sets of criteria were used for the comparison:

- U.S. EPA Region IX Preliminary Remediation Goals (PRGs) for industrial areas;
- Illinois Administrative Code (IAC) Title 35, Part 742 Tiered Approach to Corrective Action Objectives (TACO) Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties;
- 40 Code of Federal Regulations (CFR) Part 261, characteristics of hazardous waste.

4.1 SOIL SAMPLING

4.1.1 Soil Analysis for Hazardous Waste Characteristics

4.1.1.1 TCLP Metals in Soil

Three surface soil samples were analyzed for TCLP metals from locations IWI-13 through IWI-15. As indicated in Table 4-1, concentrations of TCLP lead exceeded the criteria for toxicity in sample IWI-14. At location IWI-14, TCLP lead was detected at 12.7 milligrams per liter (mg/L). The regulatory level, as specified in 40 CFR, Chapter 1, 261.24 is 5.0 mg/L for lead.

I:\WO\START\31712.S-4.WPD 263-2A-ABZI

IWI Site Section 4

Revision: 0

Date: 14 August 2002

Page: 4-2 of 5

4.1.1.2 TCLP VOCs in Soil

Three surface soil samples were analyzed for TCLP VOCs from locations IWI-13 through IWI-15.

None of the results were detected above the method detection limits.

4.1.1.3 TCLP SVOCs in Soil

Three surface soil samples were analyzed for TCLP SVOCs from locations IWI-13 through IWI-15.

None of the results were above the method detection limits.

4.1.2 TAL Metals in Soil

Three surface soil samples were analyzed for TAL metals (IWI-13, IWI-14, and IWI-15). All

samples submitted had concentrations of lead above the industrial criteria level of 1079 milligrams

per kilogram (mg/kg) (Table 4-2). Lead concentrations in the samples ranged from 1,850 mg/kg to

4,240 mg/kg. In addition, the chromium concentration in sample IWI-13 exceeded the industrial

criteria (420 mg/kg) at a concentration of 820 mg/kg. No other TAL metals concentrations were

greater than the criteria levels in these soil samples.

4.1.3 PCBs and Pesticides in Soil

Three surface soil samples were analyzed for PCBs and pesticides (IWI-13, IWI-14, and IWI-15).

No pesticide or PCB compounds were detected above the method detection limits in these samples.

4.1.4 **VOCs in Soil**

Three surface soil samples were analyzed for VOC analysis (IWI-13, IWI-14, and IWI-15). The

results from the VOC analysis are presented in Table 4-3. Results indicate that no VOCs were

1:\WO\START\31712.S-4.WPD 263-2A-ABZI

Section 4

Revision: 0 Date: 14 August 2002

Page: 4-3 of 5

detected above the criteria levels and only 11 VOCs were measured at concentrations at or above the

method detection limits.

4.1.5 SVOCs in Soil

Three surface soil samples (IWI-13, IWI-14, and IWI-15) were analyzed for SVOCs.

Bis(2-ethylhexyl)phthalate was the only SVOC detected above the method detection limits, and its

concentrations exceeded criteria levels in each of the samples tested (Table 4-3). Concentrations of

bis(2-ethylhexyl)phthalate ranged from 420,000 ug/kg to 1,500,000 ug/kg. The Region IX criteria

for bis(2-ethylhexyl)phthalate is 180,000 ug/kg. Bis(2-ethylhexyl)phthalate is not listed in the

TACO Tier 1 Soil Remediation Objectives for Industrial/Commercial properties. No other SVOCs

exceeded criteria levels in any of these samples.

4.2 **CONTAINER SAMPLING**

4.2.1 Container Sample Analysis for Hazardous Waste Characteristics

4.2.1.1 TCLP Metals in Container Sample

TCLP metals analysis was performed on the 12 container samples (IWI-1 through IWI-12). As

indicated in Table 4-4, both chromium and lead concentrations exceeded the criteria for toxicity,

which is 5.0 mg/L for both chromium and lead. Chromium exceeded the regulatory level in IWI-1

at a concentration of 42.4 mg/L. Lead exceeded the regulatory level in IWI-4 and IWI-7 at

concentrations of 7.18 and 281 mg/L, respectively. None of the other compounds in the TCLP

metals analysis exceeded the regulatory level for toxicity.

E:\WO\START31712.S-4.WPD 263-2A-ABZI

IWI Site Section 4 Revision: 0

Date: 14 August 2002

Page: 4-4 of 5

4.2.1.2 TCLP VOCs in Container Sample

Three container samples were analyzed for TCLP VOCs. Results from the analysis of TCLP VOCs

on container samples IWI-1, IWI-2, and IWI-3 are presented in Table 4-5. No VOCs were detected

at concentrations greater than the regulatory level for toxicity. Two compounds were detected above

their method detection limits: 2-butanone, at concentrations of 3,700 and 1,500 ug/L in IWI-1 and

IWI-11, respectively; and tetrachloroethene at a concentration of 210 ug/L in IWI-3.

4.2.1.3 TCLP SVOCs in Container Sample

Twelve container samples, IWI-1 through IWI-12, were analyzed for TCLP SVOCs. No SVOCs

were detected at concentrations greater than the method detection limit.

4.2.1.4 Other Hazardous Waste Characteristics in Container Sample

Analyses for other hazardous waste characteristics were performed on the material collected from

the 12 containers (IWI-1 through IWI-12). The results are presented in Table 4-6. The results

indicate that the material contained in all of the containers, except IWI-9, exhibits the characteristic

of a hazardous waste due to ignitability. The material in all of the containers except IWI-9 had a

flashpoint below the regulatory level of 140 degrees Fahrenheit (°F).

The other analysis preformed to determine if the container samples exhibit the characteristics of a

hazardous waste were: cyanide reactivity, sulfide reactivity, pH, and paint filter test. All of the

container samples had levels that were within the regulatory limits for cyanide reactivity, sulfide

reactivity, and pH. In addition, container samples IWI-1, IWI-2, IWI-3, and IWI-6 failed the paint

filter test, which indicates that they contained free liquid.

:\WO\START\31712.S-4.WPD 263-2A-ABZI

IWI Site Section 4 Revision: 0

Date: 14 August 2002

Page: 4-5 of 5

4.2.2 Container Sample Analysis for TAL Metals

Twelve container samples were collected and submitted for TAL metals analysis (IWI-1 through

IWI-12). The results are presented in Table 4-7. Three compounds exceeded the criteria level in five

samples. Antimony was detected at an elevated level in sample IWI-4 at a concentration of 2,200

mg/kg. Chromium was detected at elevated levels in samples IWI-1 and IWI-5 at concentrations of

14,000 and 500 mg/kg, respectively. Lead was detected at elevated levels in IWI-4, IWI-5, IWI-7,

and IWI-8 with concentrations ranging from 1,770 to 15,900 mg/kg. No other TAL metals were

found at significant elevated levels in the container samples.

4.2.3 Container Sample Analysis for PCBs

Twelve container samples were analyzed for PCBs (IWI-1 through IWI-12). No PCB compounds

were detected above the method detection limits in these samples.

4.2.4 Container Sample Analysis for VOCs

Three container samples were analyzed for VOCs (IWI-1, IWI-2, and IWI-3). The results from the

VOC analysis are presented in Table 4-8. Results indicate that 11 different VOCs were detected at

elevated levels. IWI-1 had elevated levels of 1,3,5-Trimethylbenzene (21,000 mg/kg), n-

propylbenzene (11,000 mg/kg), and naphthalene (4,600 mg/kg). IWI-2 did not have any compounds

detected at elevated levels. IWI-3 had elevated levels of m&p-xylene (1,600 mg/kg) and toluene

(400 mg/kg).

E\WO\START\31712.S-4.WPD 263-2A-ABZI

Section 5 Revision: 0

Date: 14 August 2002

Page: 5-1 of 2

SECTION 5

THREATS TO HUMAN HEALTH AND THE ENVIRONMENT

Conditions present on the IWI site warranting an appropriate removal action as set forth in paragraph (b)(2) of 40 CFR Part 300.415 of the NCP include the following:

Actual or potential exposure to nearby human populations, animals, or the food chain from hazardous substances or pollutants or contaminants.

Analytical results indicate that surface soil has been impacted by elevated concentrations of lead and chromium. Total lead concentrations on-site were detected up to a maximum concentration of 4,240 mg/kg and exceeded the U.S. EPA Region IX PRGs for industrial soil (750 mg/kg) in all of the soil samples. In one of these samples, chromium exceeded the U.S. EPA Region IX PRGs and was detected at a concentration of 820 mg/kg. In addition, TCLP lead (12.7 mg/L at location IWI-14) in site soils exceeded the criteria for toxicity. The contents of multiple on-site containers were found to have flashpoints below the minimum temperature level (140 °F) which indicates that the material exhibits the characteristics of a hazardous waste for ignitability as outlined in 40 CFR, Chapter 1, Section 261. Because access to the site is unrestricted and because human activity is apparent at the site, the presence of high lead and chromium levels in site soils as well as the presence of hazardous wastes in the on-site containers increases the likelihood that the site poses a significant threat to human health and the environment.

• Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate or be released.

Chromium and lead concentrations in site soils significantly exceeded criteria levels; samples containing the highest concentrations were from the drainage channel. This drainage channel is suspected to conduct surface water off-site, possibly transporting contamination off-site into streets and drainage systems. In addition, nearby residences may also be affected by the transport of lead

I:WO\START\31712.S-5.WPD 263-2A-ABZI

IWI Site Section 5

Revision: 0 Date: 14 August 2002

Page: 5-2 of 2

in soil particles that have been eroded and transported by high winds. These conditions may have

caused hazardous substances or pollutants to migrate off-site or to be released. A clear path of waste

migration was observed draining west from the drum storage area to the drainage ditch on the

western side of the property.

Threat of fire or explosion.

Drums, chemical totes, and ASTs were observed on the IWI site. The locations and conditions of

these containers varied substantially. A majority of the drums were severely damaged and degraded

as they were leaking, rusting, and bulging. Most of the chemical totes appeared to be in suitable

shape, but some have deteriorated. The contents of these containers are mostly unknown though

many containers appeared to be empty. The possibility of fire or explosion exists if the material

inside a container is highly flammable. The contents of 11 of the 12 containers sampled were found

to have flashpoints below 140 °F, which exceeds the regulatory limits used to define a hazardous

waste for ignitability. The flammability of the material inside the containers coupled with the

possibility of a spark being generated from collapsing drums or structures presents a threat of fire

or explosion. Two fires have already occurred at the site in August 1985 and in May 2002.

Hazardous substances or pollutants or contaminants in drums, barrels, tanks,

or other bulk storage containers that may pose a threat of release.

Drums, chemical totes, and ASTs were observed on the IWI site. These containers as well as

buildings in which these containers are stored have deteriorated substantially as many of the

containers are bulging, rusting, or leaking. Eleven of the containers sampled for hazardous waste

characteristics had properties that exceeded the criteria levels outlined in 40 CFR, Chapter 1, 261.21

and 261 23. In addition, many of the container samples had elevated concentrations of metals

(antimony, chromium, and lead) and TCLP metals (chromium and lead). The condition of these

containers coupled with the structural instability of the on-site buildings poses a significant threat

of a release.

1:WO\STAR I\31712.S-5.WPD 263-2A-ABZI

Section 6 Revision: 0

Date: 14 August 2002

Page: 6-1 of 2

SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 <u>CONCLUSION</u>

The IWI site is located at 7738 West 61st Place in Summit, Cook County, Illinois. Land use for the

surrounding properties includes both industrial and residential land use. Recreational-use water

bodies are within 1/4 mile of the site boundary. A residential neighborhood is located directly south

of the site across 61st Place. The Chicago Sanitary and Ship Canal is located less than 3/4 mile west,

and the Des Plaines River is located 1 mile west of the site. Most of the site is enclosed by a fence;

however, access appears to be unrestricted as START noted numerous fence breaks and evidence

of trespassing.

On 24 and 25 June 2002, START conducted a site assessment and discovered large amounts of

debris; numerous dilapidated drums, chemical totes, and ASTs; and several severely dilapidated

buildings. Three investigative soil samples and 12 container samples were collected and analyzed

for a variety of potential contaminants.

Soil sampling results for metals analyses indicated levels of lead and chromium in site soils above

U.S. EPA Region IX PRG regulatory levels. Based on the results of TCLP analysis of site soils and

according to 40 CFR Chapter 1 - 261.24, hazardous levels of lead were detected in site soils.

Materials from 11 of the 12 containers sampled were classified as hazardous waste based on the

materials' flashpoints, which were below 140 °F. Materials exhibiting flashpoints below 140 °F

exhibits criteria of a hazardous waste for ignitability. In addition, some of the material sampled had

elevated concentrations of TCLP metals, TAL metals, and VOCs.

I:\WO\START\31712.S-6.WPD 263-2A-ABZI

Section 6 Revision: 0

Date: 14 August 2002 Page: 6-2 of 2

Based on the site assessment, contaminated soil and material stored in the containers at the IWI site poses a significant threat to human health as defined under 40 CFR §300.415(b)(2)(i)-(viii)

- 1. Actual or potential exposure to nearby human populations, animals, or the food chain from hazardous substances of pollutants or contaminants exists on-site.
- 2. Weather conditions may cause hazardous substances or pollutants or contaminants to migrate or be released.
- 3. The threat of fire or explosion exists on-site.
- 4. Hazardous substances or pollutants or contaminants in drums, barrels, tanks, or other bulk storage containers, may pose a threat of release.

6.2 <u>RECOMMENDATIONS</u>

Based on the conclusions drawn from the information gathered during the site assessment and the analytical results, START recommends the following:

- The on-site containers should be further characterized.
- Containers that are determined to contain a hazardous waste should be removed and disposed of at a licensed hazardous waste disposal facility.
- An extent of contamination investigation of site soils should be conducted to determine the volume of soil exceeding cleanup objectives.

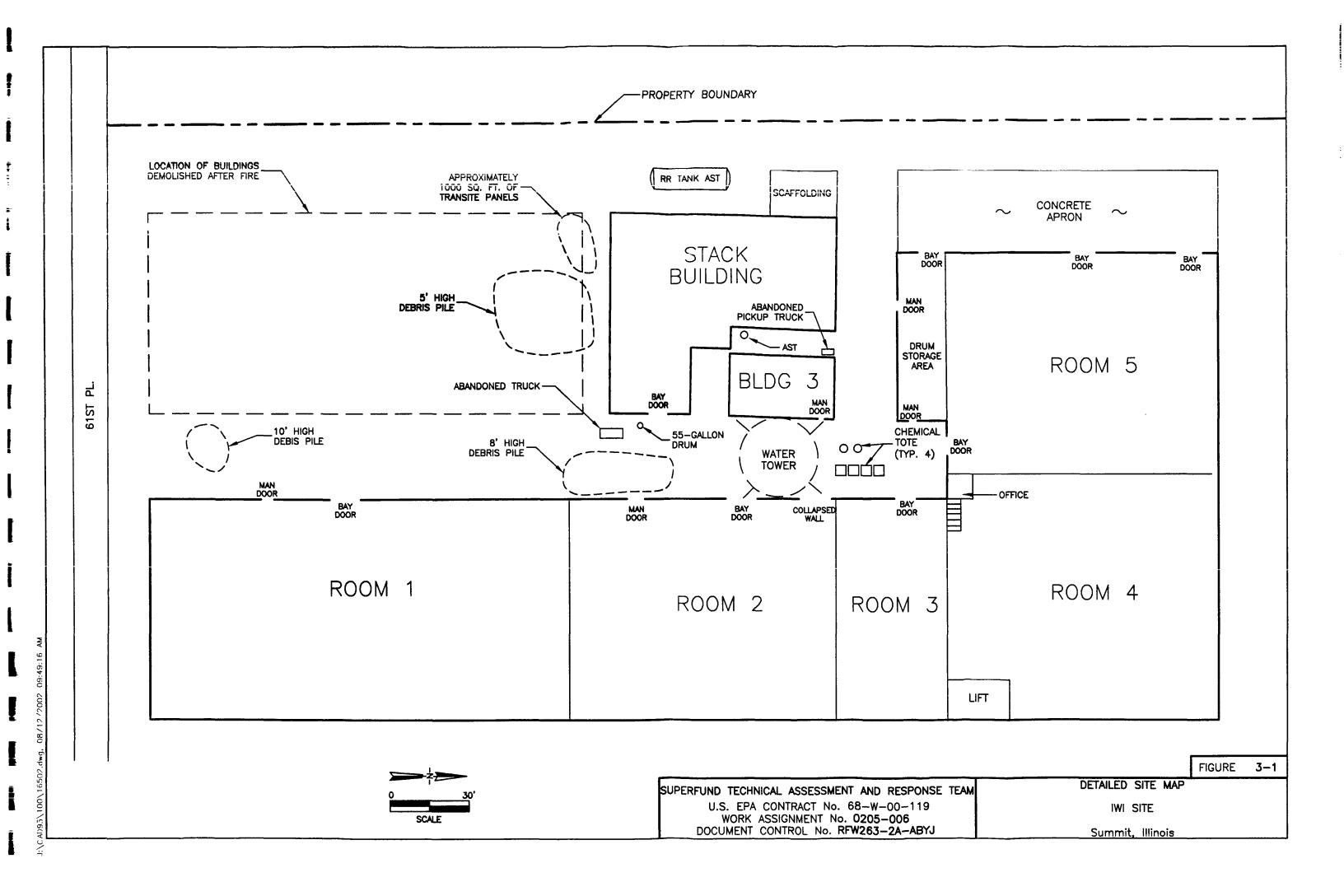
I:\WO\START\31712.S-6.WPD 263-2A-ABZI

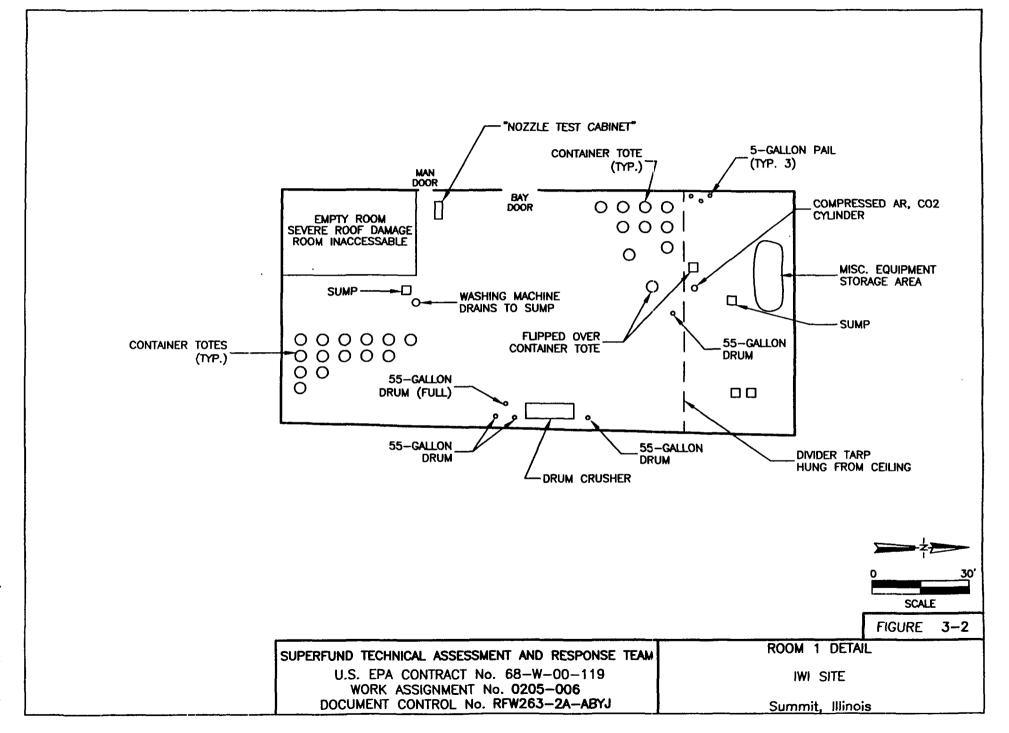
Site Assessment Report IWI Site Section 7 Revision: 0 Date: 14 August 2002

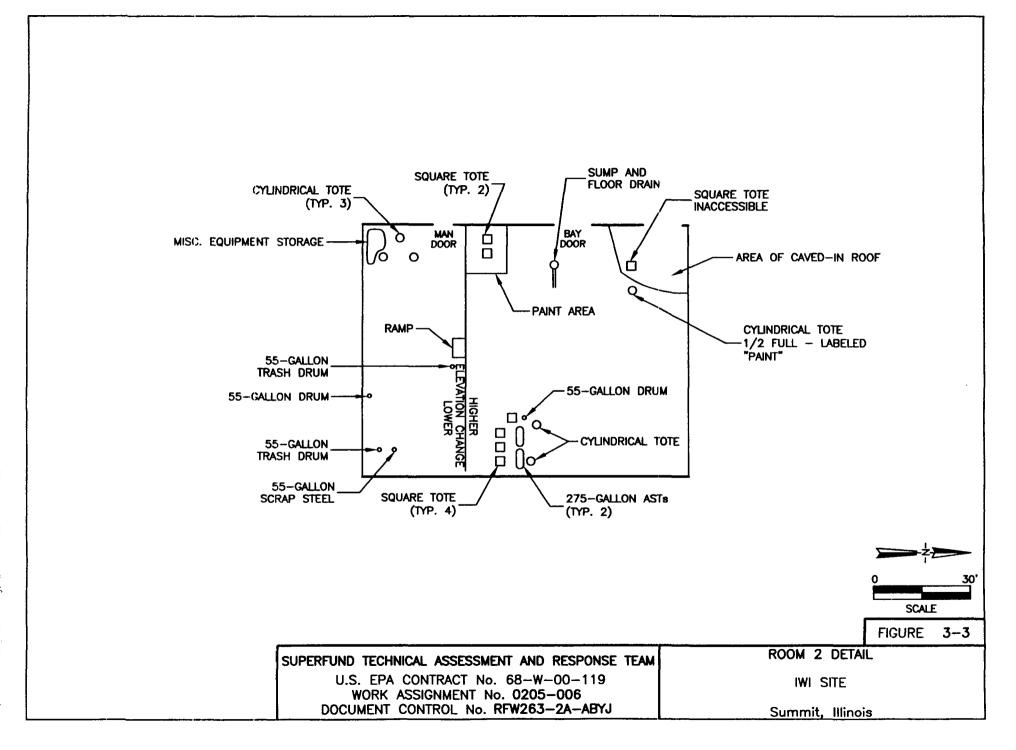
Page: 1 of 1

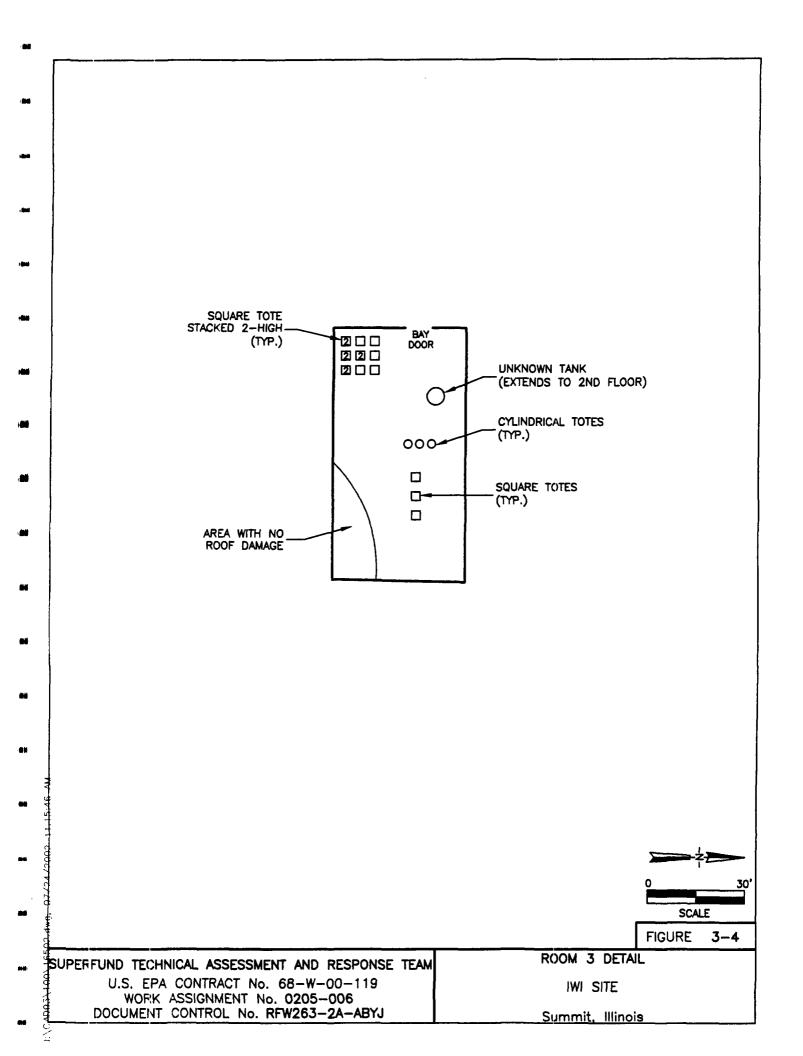
SECTION 7

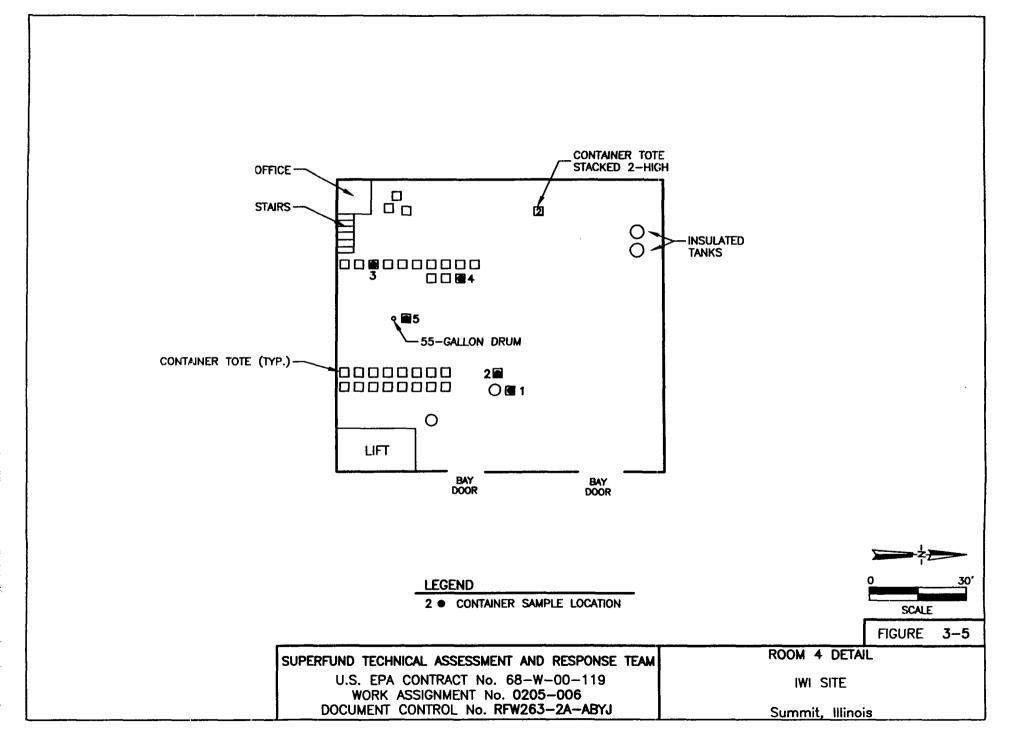
REFERENCES

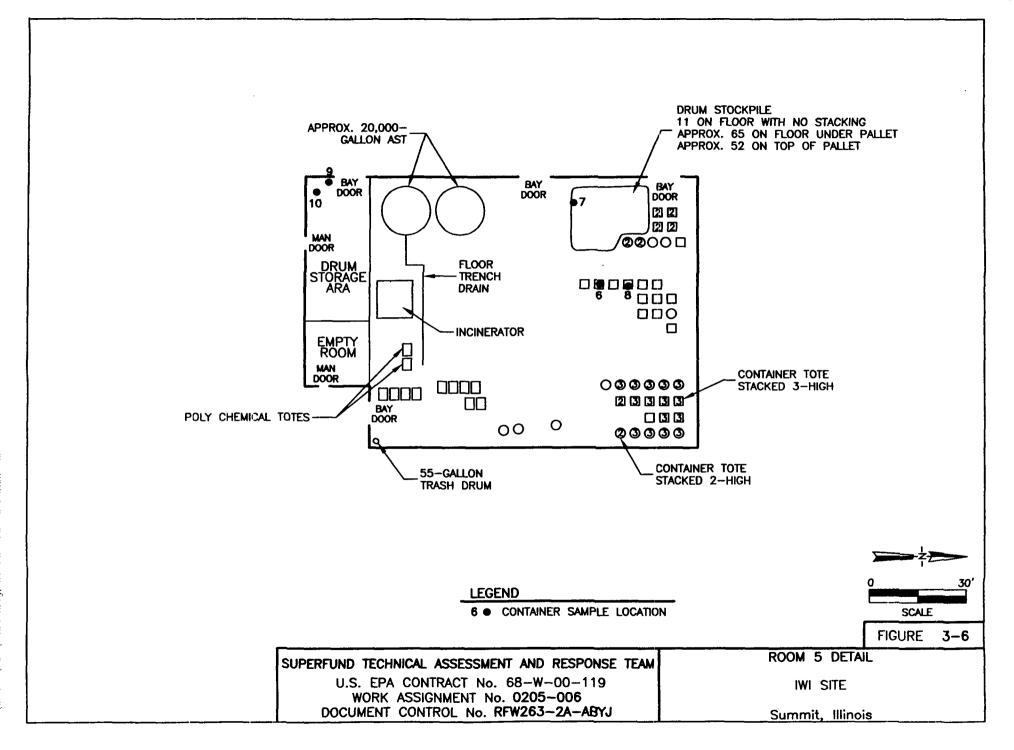

- 40 CFR Part 261, Identification and listing of hazardous waste, 1990.
- Illinois Environmental Protection Agency. Freedom of Information Act Inquiry Response. Bureau of Air. 10 July 2002
- Illinois Environmental Protection Agency. Freedom of Information Act Inquiry Response. Bureau of Water. 11 July 2002
- Illinois Environmental Protection Agency. Freedom of Information Act Inquiry Response. Office of Emergency Response. 18 July 2002
- Illinois Administrative Code (IAC). 1997. Title 35 IAC, Part 742. *Tiered Approach to Corrective Action Objectives*. Effective 1 July 1997.
- United States Environmental Protection Agency (U.S. EPA), Region IX Preliminary Remediation Goals, 2000.

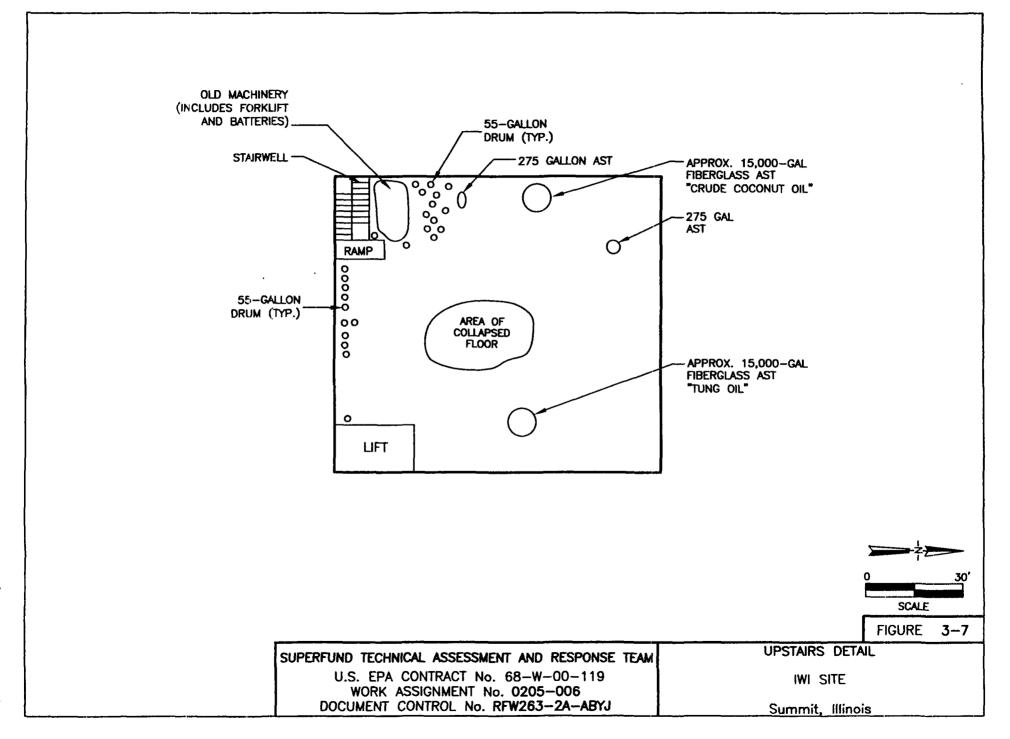

FIGURES

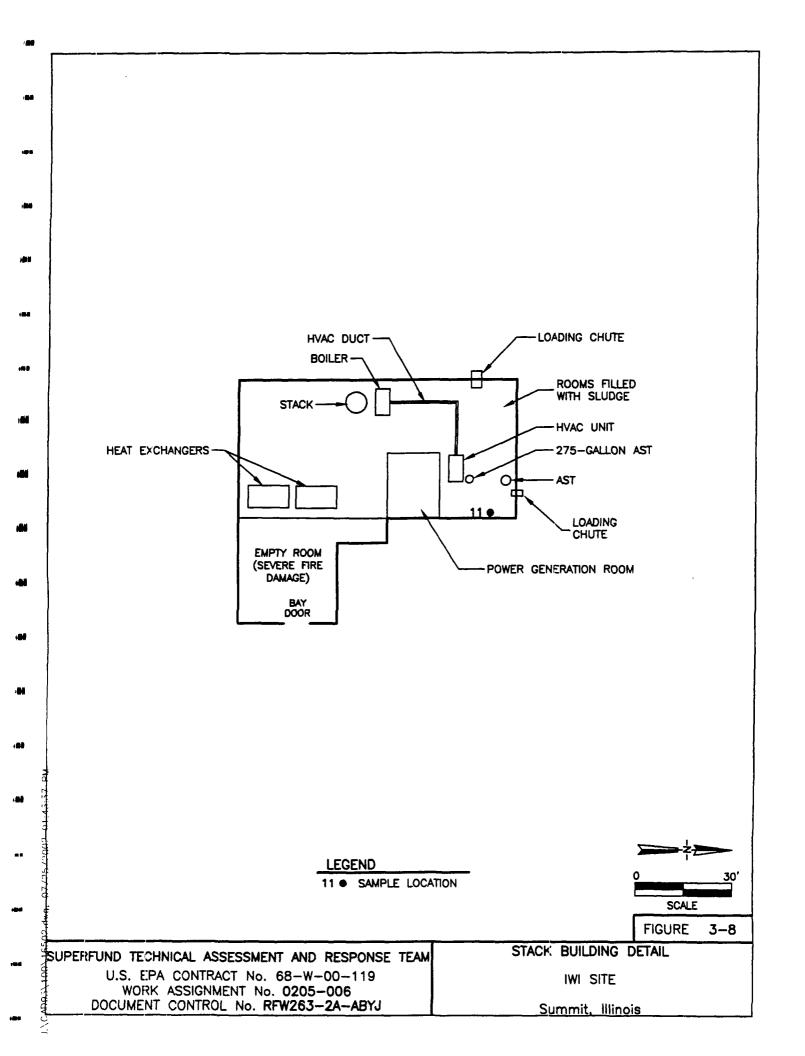

1

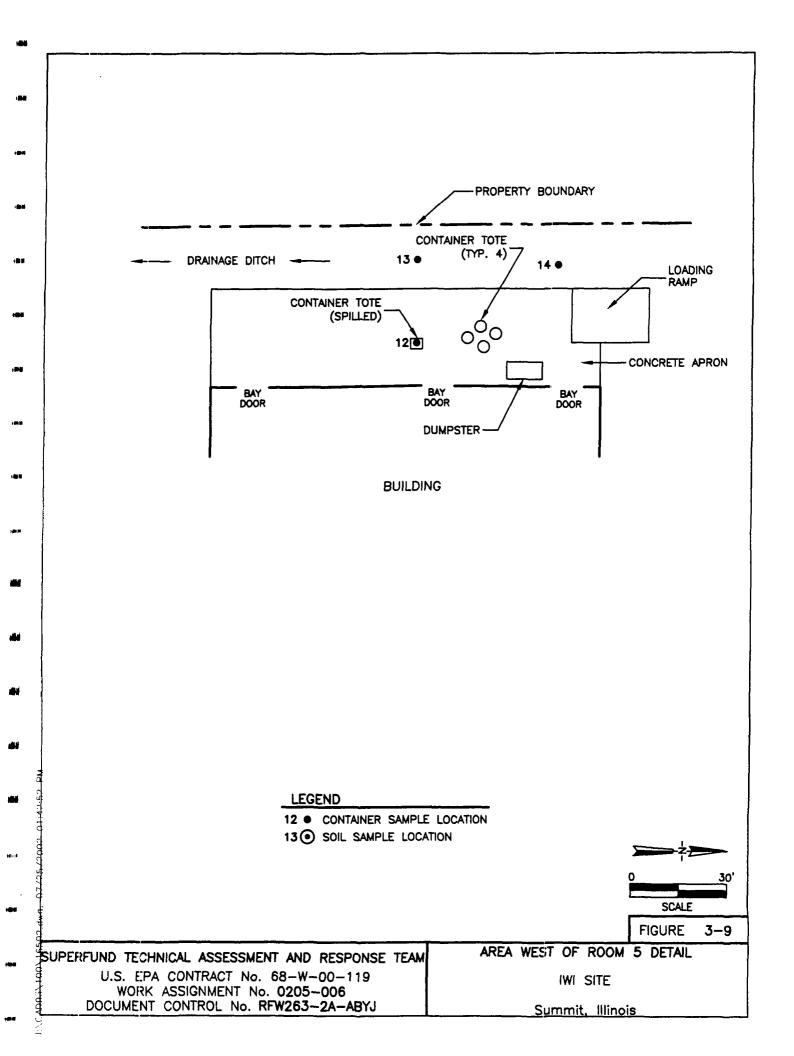

.

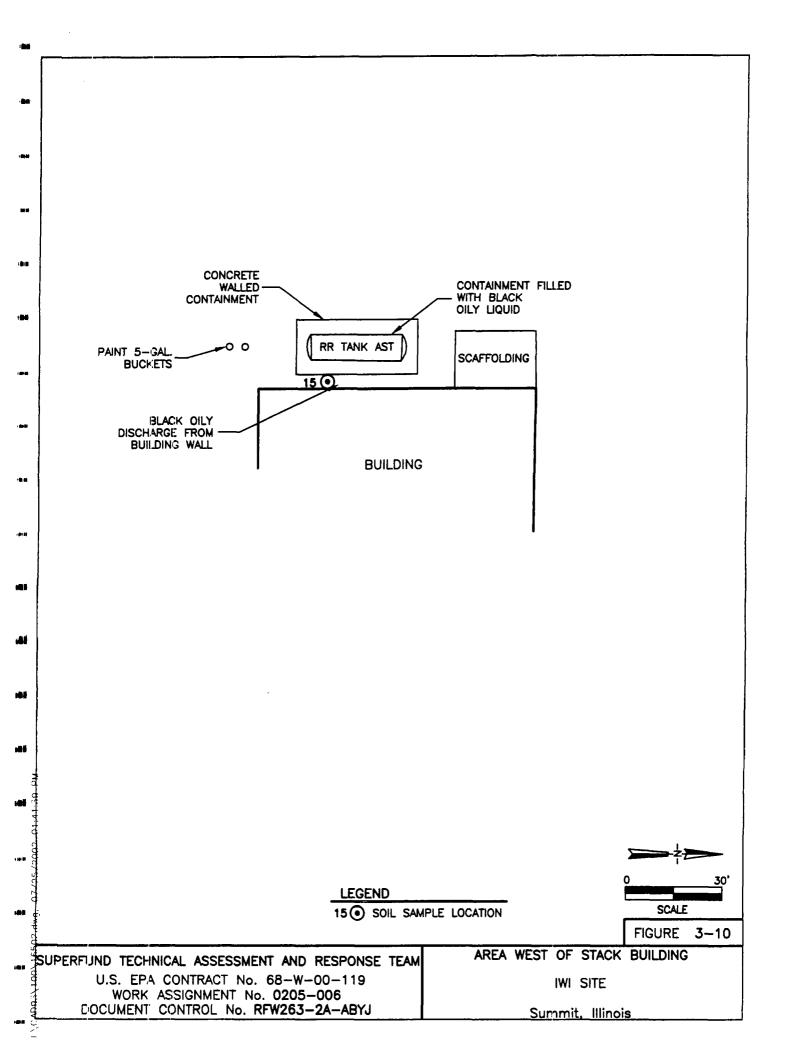

*











TABLES

- 4

Table 3 - 1

Container Inventory
IWI Site, Summit, IL

		Approximate	1	1	 -	<u> </u>	T
	l .	Volume	j		Tank		
Location	Type of Container	(Gallons)	% Full	Number	Material	Suspected Contents	Comments
							Unable to access the drums because of the severe
		ĺ	ł			A few of the drums are open and overflowing with debris,	structural damage to this room's roof, which has almost
Building 3	55-Gallon Drum	55	Unknown	5	Steel	including metal shavings.	completely fallen.
		i					Unable to access the drums because of the severe
			ł				structural damage to this room's roof, which has almost
Building 3	55-Gallon Drum	55	Unknown	11	Poly	Unknown	completely fallen.
Concrete						One drum is suspected to contain water, the other drum's	
Apron Area	55-Gallon Drum	55	100	2	Poly	contents are unknown.	Drums located in the western drainage ditch.
Concrete	Cylindrical Chemica					Petroleum based products and sludge and other contents that	7
Apron Area	Totes	50()	50	4	Steel	could not be determined.	<u></u>
Concrete							
Apron Area	Dumpster	1000	100	1	Steel	Soil and debris.	
	1	ļ	.				Container has been flipped over and contents have
Concrete							spilled onto the concrete and dried in place. One
Apron Area	Square Chemical To es	34.5	75	1	Fiberglass	Rubber-like substance, tan in color, stiff but stretchy.	analytical sample of these contents was collected.
Cortyard							
Near Water							İ
Tower	55-Gallon Drum	55	100	1	Ste <u>el</u>	Unknown	<u> </u>
Cortyard	1						1
Near Water	Cylindrical Chemica:						
Tower	Totes	34.5	0	1	Steel	NA	
							Room was determined to be large enough to hold up to
							approximately 700 drums. Because the drums are
Drum	i						damaged, rusted, and stacked up to 3 high, unable to
	55-Gallon Drum	_55	U nknown	Unknown	Steel	Paint waste and petroleum products.	determine exactly how many drums are in this room.
Outside							
Stack	Aboveground Storage		[
Building	Tank	15(0	Unknown	_1	Steel	Unknown	<u> </u>
Outside							
Stack	Aboveground Storage						Railroad car AST surrounded by a 18" high concrete
Building	Tank	200 00	Unknown	1	Steel	Petroleum products.	wall.
Outside	[L
Stack	Aboveground Storage				Insulated		Fiberglass jacket on the tank, located outside of sludge
Building	Tank	10(0	Unknown	1	Steel	Suspected hot water tank.	room.
Power	J .						
Generation							1
	55-Gallon Drum	55	100	1	Steel	Debris	
Room 1	55-Gallon Drum	5:	0	2	Steel	Unknown	<u> </u>
Room 1	55-Gallon Drum		50	1	Steel	Unknown	
Room i	55-Gallon Drum	5:	50	2	Steel	Debris	1

Table 3 - 1

Container Inventory
IWI Site, Summit, IL

		Approximate	ı —				
		Volume			Tank		
Location	Type of Container	(Gallons)	% Full	Number	Material	Suspected Contents	Comments
	Cylindrical Chemica						
Room 1	Totes	345	0	21	Steel	Unknown	
	Cylindrical Chemica						
Room 1	Totes	345	40	2	Steel	Labeled NaOH	
Room !	Pails	5	100	2	Plastic	Solids	
Room 1	Square Chemical To es	345	0	5	Steel	Unknown	Two have the tops cut off.
Room 1	Square Chemical To es	345	40	11	Steel	Unknown	
Room 2	55-Gallon Drum	55	50	5	Steel	Debris	Used as trash cans
	Aboveground Storage		1				
Room 2	Tank	275	0	2	Steel	Unknown	·
	Cylindrical Chemica						
Room 2	Totes	345	0	3	Steel	Unknown	
Room 2	Paint Cans	1	50-100	5		Paint	
Room 2	Square Chemical To es	345	Unknown	8	Steel	Unknown	Some totes are inaccessible because of roof damage.
Room 2	Square Chemical To es	345	50	1	Steel	Unknown	
	1						Bottom of tank is 6' above floor, and top of tank
	1						protrudes above second story's floor level. Second story
							is inaccessible due to severe structural damage to the
	Aboveground Storage			ľ			building. Piping from tank extends to floor level.
Room 3	Tank	30(0	Unknown	11		Unknown	Unknown if tank is open or closed at the top.
Room 3	Square Chemical To es				Steel	Unknown	
	Aboveground Storage						
Room 4	Tank	500	Unknown	2	Unknown	Possible hot water tanks.	Tanks have insulated jackets on them.
	Cylindrical Chemical					Petroleum based products and sludge, paint products and	
Room 4	Totes	400-500	100	2		sludge, and other contents that could not be determined.	
						Petroleum based products and sludge, paint products and	
Room 4	Square Chemical Totes	350-600	75-100	37		sludge, and other contents that could not be determined.	
Room 5	55-Gallon Drum	5:	75-100	125	Steel	Unknown	
	Aboveground Storage			_			ĺ
Room 5	Tank	200 00	Unknown	2	Steel	Unknown	
	Cylindrical Chemical						
Room 5	Totes	350-600	50-100	25	Steel	Unknown	
_	Cylindrical Chemical		_			L	
Room 5	Totes	750	0	1	Steel	Unknown	
_	Cylindrical Chemical					.	
Room 5	Totes	345	0	21	Steel	Unknown	
Room 5	Square Chemical Totes	345	0	60	Steel	Unknown	
Room 5	Square Chemical Totes	400	0	2	Poly	Unknown	
Stack	Aboveground Storage						Tank is inaccessible because of sludge that has piled up
Building	Tank	275	Unknown	1	Steel	Petroleum products.	in room, which creates unstable footing.

Table 3 - 1

Container Inventory IWI Site, Summit, IL

		Approximate			T		
Location	Type of Container	Volume (Gallons)	% Full	Number	Tank Material	Suspected Contents	Comments
Stack	Aboveground Storage						I
Building	Tank	_75·)	15	11	Steel	Dried Sludge	Open top tank.
Stack Building	Loading Chute	500	75	1	Steel	Dried Sludge	Chute extends into sludge room and was probably the means of dumping all of the sludge into the room.
Stack	Room (which was used						Room's windows and doors were rigged to prevent the
Building	as a container)	Unknown	NA	1	NA	Dried Sludge	sludge from escaping the room.
Upstairs	55-Gallon Drum	55	25-75	27	Steel	Dried Sludge	
Upstairs	Aboveground Storage Tank	150-)0	Unknown	1	Fiberglass	Crude Coconut Oil	Appears to be empty.
Upstairs	Aboveground Storage Tank	15000	Unknown	1	Fiberglass	Tung Oil	Appears to contain some material.
Upstairs	Aboveground Storage Tank	50)	25-75	1	Steel	Unknown	
Upstairs	Aboveground Storage Tank	275	0	1	Steel	Unknown	
Upstairs	Pails	5	50-100	10	Plastic	Unknown	

Table 4 - 1

Surface Soil TCLP Metals Sampling Results IWI Site, Summit, IL

Sample II)	IWI-13	IWI-13D	IWI-14	IWI-15	
Sample Type	soil	soil	soil	soil	Criteria Level ^a
Chemical Name][
Arsenic (mg/L)	0.05 U	0.05 U	0.05 U	0.05 U	5.0
Barium (ıng/L)	2.58	3.36	36.4	2.16	100.0
Cadmium (mg/L)	0.05 U	0.05 U	0.274	0.074	1.0
Chromium (mg/L)	0.1 U	0.1 U	0.228	0.1 U	5.0
Lead (mg/L)	2.63 J	4.06 J	12.7	3.31	5.0
Mercury (mg/L)	0.001 U	0.001 U	0.001 U	0.001 U	0.2
Selenium (mg/L)	0.05 UJ	0.05 UJ	0.062	0.05 U	1.0
Silver (mg/L)	0.1 U	0.1 U	0.1 U	0.1 U	5.0

^a 40 CFR - Chapter 1 - 261.24, Maximum concentration of contanimants for the toxicity characteristic Bold and highlighted sample concentrations are higher than the criteria level for that compound Sample concentrations flagged with U are below method detection limits Sample concentrations flagged with J are estimated mg/L = mılligrams per liter

E\WO\START31712.T4-1.XLS 263-2A-ABZI

Page: 1 of 1

Table 4 - 2

Surface Soil TAL Metals Sampling Results IWI Site, Summit, IL

Sample ID	IWI-13	IWI-13D	IWI-14	IWI-15	Criteria	Level
Sample Type	soil	soil	soil	soil	Indus	strial
Chemical Name					Region IX ^a	TACO ^b
Aluminum (mg/kg)	3,800	3,400	6,200	12,000	100,000	N.L.
Antimony (mg/kg)	59 J	26 J	44 J	18 J	818	82
Arsenic (mg/kg)	29.5	15.6	12.2	37.2	439	61
Barium (mg/kg)	1,600 J	980 J	11,000 J	1,300 J	100,000	14,000
Beryllium (mg/kg)	1.94 J	0.492 UJ	1.3 J	1.04 UJ	2,242	410
Cadmium (mg/kg)	14.7	12.6	26.2	17.6	809	200
Calcium (mg/kg)	28,000	22,000	21,000	58,000	N.L.	N.L.
Chromium (mg/kg)	820	170	400	48	448	420
Cobalt (mg/kg)	15	10	5.7	14	100,000	12,000
Copper (mg/kg)	180	52	61	150	75,908	8,200
Iron (mg/kg)	38,000	20,000	8,700	27,000	100,000	N.L.
Lead (mg/kg)	4,240	2,840	1,850	1,870	750	400
Magnesium (mg/kg)	11,000	8,400 J	6,300	240,000	N.L.	N.L.
Manganese (mg/kg)	770 J	530	260 J	340 J	32,250	9,600
Mercury (mg/kg)	0.06	0.05	0.12	0.04	613	61
Nickel (mg/kg)	6.2	8.7	7.9	61	40,877	4,100
Potassium (mg/kg)	380	300	380	1300	N.L.	N.L.
Selenium (mg/kg)	4.59	3.12	1.39	5.24	10,220	1,000
Silver (mg/kg)	2.2	0.49 UJ	1.4 J	1 UJ	10,220	1,000
Sodium (mg/kg)	1,300 J	950	1,200	2,100	N.L.	N.L.
Thallium (mg/kg)	0.673 U	0.492 U	0.513 U	1.04 U	135	160
Vanadium (mg/kg)	9	7.9	8	79	14,308	1,400
Zinc (mg/kg)	1,100 J	660 J	1,200 J	2,500 J	100,000	61,000

^a U.S. EPA Region IX Industrial PRGs for Combined Exposure Pathways

Bold and highlighted sample concentrations are higher than the most conservative industrial criteria level for that compound

Sample concentrations flagged with U were below method detection limits

Sample concentrations flagged with J are estimated

N.L. = Not listed

ug/kg = micrograms per kilogram

^b IEPA TACO Tier 1 Remediation Objectives for Industrial/Commercial Properties

Table 4 - 3 Surface Soil Organic Compounds Sampling Results IWI Site, Summit, IL

Sample ID	IWI-13	IWI-13D	IWI-14	IWI-15	Criteria	Level
Sample Type	soil	soil	soil	soil	Indust	rial
Chemical Name					Region IX ^a	TACO
Volatile Organic Compounds						
1,2,4-Trimethylbenzene (ug/kg)	14 UJ	11 U	58 J	1900 JE	1.7E+05	N.L.
1,3,5-Trimethylbenzene (ug/kg)	14 UJ	11 U	35 J	1600 JE	7.0E+04	N.L.
Acetone (ug/kg)	99 J	150	83 J	260	6.2E+06	1.0E+08
Ethylbenzene (ug/kg)	14 J	35	11 UJ	4200 JE	2.3E+05	5.8E+04
Isopropylbenzene (Cumene) (ug/kg)	14 UJ	11 UJ	11 UJ	180	5.2E+05	N.L.
m&p-xylene (ug/kg)	50 J	140	27 J	5900 JE	2.1E+05	4.2E+05
Naphthalene (ug/kg)	14 UJ	11 U	11 UJ	1100 JE	N.L.	1.8E+03
n-Propylbenzene (ug/kg)	14 UJ	11 U	4.8 J	22 U	2.4E+05	N.L.
o-xylene (ug/kg)	20 J	70	17 J	4400 JE	2.1E+05	4.1E+05
p-Isopropyltoluene (ug/kg)	14 UJ	11 U	11 UJ	34	N.L.	N.L.
Toluene (ug/kg)	14 UJ	11 U	11 UJ	430	5.2E+05	4.2E+04
Semivolatile Organic Compounds			1	Ţ		
Bis(2-ethylhexyl)phthalate (ug/kg)	5.0E+05	4.2E+05	1.5E+06	6.2E+05	1.8E+05	N.L.

^a U.S. EPA Region IX Industrial PRGs for Combined Exposure Pathways

Bold and highlighted sample concentrations are higher than the most conservative industrial criteria level for that compound Sample concentrations flagged with U were below method detection limits

Sample concentrations flagged with J are estimated

Sample concentrations flagged with E exceeded instrument calibration limits

N.L. = Not listed

ug/kg = micrograms per kilogram

I:\WO\START\31712.T4-3.XLS

^b IEPA TACO Tier 1 Remediation Objectives for Industrial/Commercial Properties Only samples where one or more concentrations were greater than method detection limits are shown in this table

Table 4 - 4

Container TCLP Metals Sampling Results
IWI Site, Summit, IL

Chemical Name Sample Type	Arsenic (mg/L) waste	Barium (mg/L) waste	Cadmium (mg/L) waste	Chromium (mg/L) waste	Lead (mg/L) waste	Mercury (mg/L) waste	Selenium (mg/L) waste	Silver (mg/L) waste	
Regulatory Level ^a	5.0	100.0	1.0	5.0	5.0	0.2	1.0	5.0	
Sample ID									
IWI-1	0.05 U	0.724	0.05 U	42.4	0.05 U	0.001 U	0.05 U	0.1 UJ	
IWI-2	0.05 U	0.28	0.05 U	0.1 U	0.094	0.001 U	0.05 U	0.1 UJ	
IWI-3	0.05 U	0.2 U	0.05 U	0.1 U	0.05 U	0.001 U	0.05 U	0.1 UJ	
IWI-4	0.05 U	1.96	0.05 U	0.1 U	7.18	0.001 U	0.05 U	0.1 UJ	
IWI-5	0.05 U	1.49	0.085	0.278	4.64	0.001 U	0.05 U	0.1 UJ	
IWI-6	0.05 U	0.299	0.05 U	0.1 U	0.05 U	0.001 U	0.05 U	0.1 UJ	
IWI-7	0.05 U	0.2 U	0.05 U	0.1 U	281	0.001 U	0.05 U	0.1 UJ	
IWI-8	0.05 U	0.2 U	0.05 U	0.1 U	0.313	0.001 U	0.05 U	0.1 UJ	
IWI-9	0.05 U	0.423	0.05 U	0.1 U	4.95	0.001 U	0.05 U	0.1 UJ	
IWI-10	0.05 U	0.289	0.05 U	0.1 U	0.085	0.001 U	0.05 U	0.1 UJ	
IWI-11	0.05 U	3.12	0.05 U	0.463	0.072	0.001 U	0.05 U	0.1 UJ	
IWI-12	0.05 U	0.2 U	0.05 U	0.1 U	0.173	0.001 U	0.05 U	0.1 UJ	

 $^{^{}a}$ 40 CFR - Chapter 1 - 261.24, Maximum concentration of contanimants for the toxicity characteristic Bold and highlighted sample concentrations are higher than the criteria level for that compound Sample concentrations flagged with U are below method detection limits mg/L = milligrams per liter

Table 4 - 5

Container TCLP Volatile Organic Compounds Sampling Results
IWI Site, Summit, IL

Sample ID	2-Butanone (MEK) (ug/L)	Tetrachloroethene (ug/L)		
Sample Type	waste	waste		
Regulatory Level ^a	200,000	700		
Chemical Name				
IWI-1	3,700	20 U		
IWI-2	100 U	20 U		
IWI-3	100 U	210		
IWI-4	100 U	20 U		
IWI-5	100 U	20 U		
IWI-6	100 U	20 U		
IWI-7	100 U	20 U		
IWI-8	100 U	20 U		
IWI-9	100 U	20 U		
IWI-10	100 U	20 U		
IWI-11	1,500	20 U		
IWI-12	100 U	20 U		

^a 40 CFR - Chapter 1 - 261.24, Maximum concentration of contanimants for the toxicity characteristic Bold and highlighted sample concentrations are higher than the criteria level for that compound Sample concentrations flagged with U were below method detection limits ug/L = micrograms per liter

Table 4 - 6

Container Other Characteristics of Hazardous Waste Sampling Results
IWI Site, Summit, IL

Analysis	Cyanide Reactivity (mg/kg)	Sulfide Reactivity (mg/kg)	pH (temperature at analysis)	Flashpoint (°F)	Paint filter test	
Sample Type	waste	waste	waste	waste	waste	
Regulatory Level ^a	250	500	2>pH or pH>12.5	<140		
Sample ID						
IWI-1	1 U	242	6.28	85	Fail	
IWI-2	1 U	259	4.5	90	Fail	
IWI-3	1 U	212	8.8	85	Fail	
IWI-4	1 U	261	5.94	90	Pass	
IWI-5	1 U	385	5.47	90	Pass	
IWI-6	1 U	302	4.96	105	Fail	
IWI-7	1 U	169	5.52	95	Pass	
IWI-8	1 U	152	10.7	100	Pass	
IWI-9	1 U	445	6.63	155	Pass	
IWI-10	1 U	390	5.55	90	Pass	
IWI-11	1 U	298	5.55	75	Pass	
IWI-12	1 U	485	5.5	120	Pass	

^a 40 CFR - Chapter 1 - 261.21 and 261.23

Bold and highlighted sample results exceed the criteria level

Sample concentrations flagged with U were below method detection limits

NA = not applicable

mg/kg = milligrams per kilogram

°F = degrees Fahrenheit

Pass = No free liquid present

Fail = Free liquid present

IWI Site Site Assessment Report Section 4 Revision: 0

Date: 14 August 2002 Page: 1 of 2

Table 4 - 7

Container TAL Metals Sampling Results IWI Site, Summit, IL

Sample ID	IWI-1	IWI-2	IWI-3	IWI-4	IWI-5	IWI-6
Sample Type	sludge	sludge	sludge	sludge	sludge	sludge
Chemical Name						
Aluminum (mg/kg)	1800	330	52	3000	10000	74
Antimony (mg/kg)	74	68	3.9 U	2200	110	4 U
Arsenic (mg/kg)	1.42	1.49	0.658 U	7.53	14.5	0.662 U
Barium (mg/kg)	720	650	100	1400	2100	17
Beryllium (mg/kg)	36.3	0.329 U	0.329 U	0.329 U	0.329 U	0.331 UJ
Cadmium (mg/kg)	0.587 J	3.53 J	3.73 J	0.367 J	30.9 J	0.31 U
Calcium (mg/kg)	75	5900	210	5800	14000	290
Chromium (mg/kg)	14000	23	52	27	500	0.66 U
Cobalt (mg/kg)	0.66 U	1.7	0.89	0.66 U	10	0.66 U
Copper (mg/kg)	4	25	80	6.9	290	180
Iron (mg/kg)	350	1500	75	3300	15000	200
Lead (mg/kg)	112	79.7	101	5860	1770	1.87
Magnesium (mg/kg)	66 U	400	66 U	4700	3800	66 U
Manganese (mg/kg)	4.4	35	2.3	95	110	1.6
Mercury (mg/kg)	0.03 U	0.03	0.17	0.03	0.71	0.03 U
Nickel (mg/kg)	1.3 U	1.3 U	1.3 U	30_	25	1.3 U
Potassium (mg.kg)	66 U	66 U	950	100	800	66 U
Selenium (mg/kg)	0.461 U	0.986	0.593	1.45	1.62	0.676
Silver (mg/kg)	46	0.33 U	0.33 U	0.33 U	2.1	0.33 U
Sodium (mg/kg)	66 U	500	650	370	3700	89
Thallium (mg/kg)	0.329 U	0.331 U				
Vanadium (mg kg)	15	0.99	0.66 U	0.66 U	3.7	0.66 U
Zinc (mg/kg)	140	340	130	800	1600	4.9

Sample concentrations flagged with \boldsymbol{U} were below method detection limits Sample concentrations flagged with \boldsymbol{J} are estimated

 $N \perp . = Not listed$

ug.kg = micrograms per kilogram

I:WO:START31712.T4-7.XLS 262-2A-ABZI

IWI Site Site Assessment Report Section 4 Revision: 0 Date: 14 August 2002

Page: 2 of 2

Table 4 - 7 (Continued)

Results of Container Samples Analysis for TAL Metals IWI Site, Summit, IL

Sample ID	IWI-7	IWI-8	IWI-9	IWI-10	IWI-11	IWI-12
Sample Type	sludge	sludge	sludge	sludge	sludge	sludge
Chemical Name						
Aluminum (mg/kg)	20	24	1700	290	220	6.7
Antimony (mg/kg)	4 U	4 U	24	5.4	31	4 U
Arsenic (mg/kg)	0.662 U	0.667 U	1.93	3.27	0.667 U	0.662 U
Barium (mg/kg)	17	18	370	110	490	0.66 U
Beryllium (mg/kg)	0.331 U	0.333 U	0.809	0.336 U	0.333 U	0.331 U
Cadmium (mg/kg)	0.331 UJ	0.331 UJ	5.62 J	0.486 J	9.99 J	0.331 UJ
Calcium (mg/kg)	9400	180	3500	1200	6200	97
Chromium (mg/kg)	0.78	1.8	290	9.6	29	0.66 U
Cobalt (mg/kg)	0.66 U	0.67 U	12	16	1.8	0.66 U
Copper (mg/kg)	5.2	3.9	38	13	15	2.7
Iron (mg/kg)	140	160	2100	5700	380	7.4
Lead (mg/kg)	15900	29.1	4450	40.4	280	0.697
Magnesium (mg/kg)	84	78	1500	460	190	1000
Manganese (mg/kg)	1.4	1.9	50	42	47	0.66 U
Mercury (mg/kg)	0.03 U	0.03 U	0.06	0.03 U	0.03	0.03
Nickel (mg/kg)	1.3 U	1.3 U	1.8	1.3 U	2.6	1.3 U
Potassium (mg/kg)	_66 U	67 U	160	67 U	110	66 U
Selerium (mg/kg)	0.803	0.499	0.804	1	0.803	0.536
Silver (mg/kg)	0.33 U	0.33 U	0.91	0.34 U	0.33 U	0.33 U
Sodrum (mg/kg)	330	780	1300	210	1300	430
Thallium (mg/kg)	0.331 U	0.333 U	0.329 U	0.336 U	0.333 U	0.331 U
Vanadium (mg/kg)	1.1	0.83	1.6	0.67 U	0.67 U	0.66 U
Zinc (mg/kg)	8	1700	280	69	2000	18

Sample concentrations flagged with U were below method detection limits Sample concentrations flagged with J are estimated

N.L. = Not listed

ug/kg = micrograms per kilogram

I:\WO`START\31712.T4-7.XLS 262-2A-ABZI

Table 4 - 8

Container Volatile Organic Compounds Sampling Results
IWI Site, Summit, IL

Sample ID	IWI-1	IWI-2	IWI-3
Sample Type	sludge	sludge	sludge
Chemical Name			
1,3,5-Trimethylbenzene (mg/kg)	21,000	0.12 U	7
2-Butanone (MEK) (mg/kg)	2,200	7.60	100 U
4-Methyl-2-pentanone (MIBK) (mg/kg)	1,100	2.10	100 U
Acetone (mg/kg)	1,000 U	5.50	100 U
Carbon disulfide (mg/kg)	200 U	0.21	20 U
cis-1,2-Dichloroethene (mg/kg)	200 U	0.22	20 U
Ethylbenzene (mg/kg)	860	0.12	390
Isopropylbenzene (Cumene) (mg/kg)	2,200	0.12 U	20 U
m&p-xylene (mg/kg)	4,400	0.43	1,600
Methylene chloride (mg/kg)	200 U	0.05	20 U
Naphthalene (mg/kg)	4,600	0.21	51
n-Butylbenzene (mg/kg)	2,500	0.11	25
n-Propylbenzene (mg/kg)	11,000	0.12 U	140
o-xylene (mg/kg)	4,900	0.17	380
p-Isopropyltoluene (mg/kg)	670	0.12 U	12
sec-Butylbenzene (mg/kg)	1,200	0.12 U	20 U
tert-Butylbenzene (mg/kg)	200 U	0.12 U	11
Tetrachloroethene (mg/kg)	200 U	0.12 U	82
Toluene (mg/kg)	650	6.90	400

Sample concentrations flagged with U were below method detection limits N.L. = Not listed mg/kg = micrograms per kilogram

I:\WO\START31712.T4-8.XLS

APPENDIX A

PHOTO LOG

are the second of the second o

e de la companya della companya della companya de la companya della companya dell

•

ss d

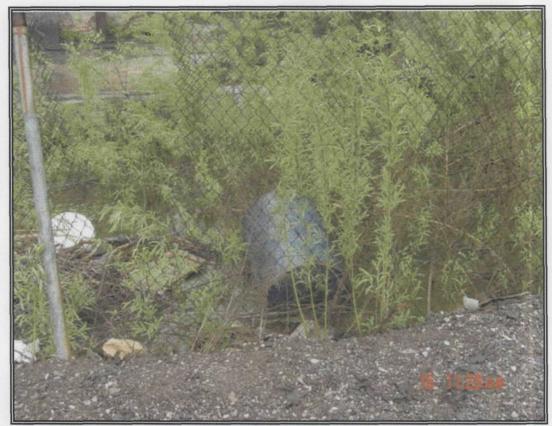


Photo 1 (EPA Site Visit, 16 May 2002) - Poly drum located in the drainage ditch along the western boundary of the site. The picture was taken facing east from the adjacent property.

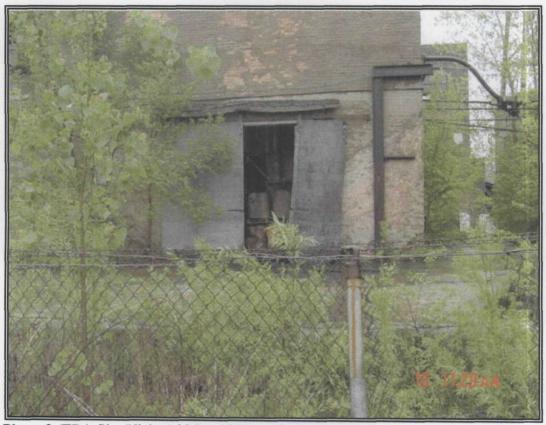


Photo 2 (EPA Site Visit, 16 May 2002) - View of drum storage room from adjacent property facing east.

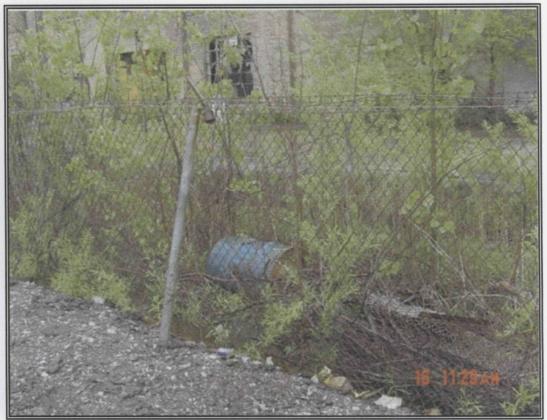


Photo 3 (EPA Site Visit, 16 May 2002) - Drainage ditch located along western boundary of site.

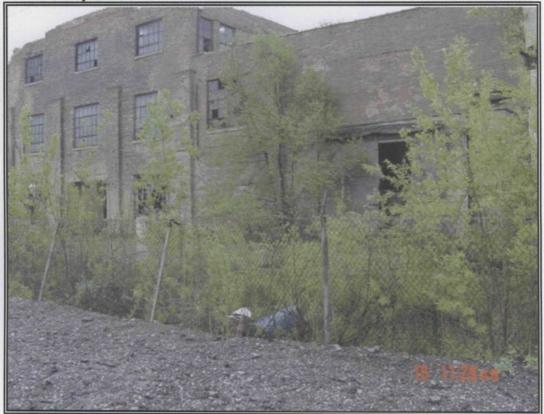


Photo 4 (EPA Site Visit, 16 May 2002) - Northwestern portion of the site facing east.

Photo 5 (EPA Site Visit, 16 May 2002) - Demolition of the buildings that were damaged by fire.

Photo 6 (EPA Site Visit, 16 May 2002) - Steel structure of the building during demolition.

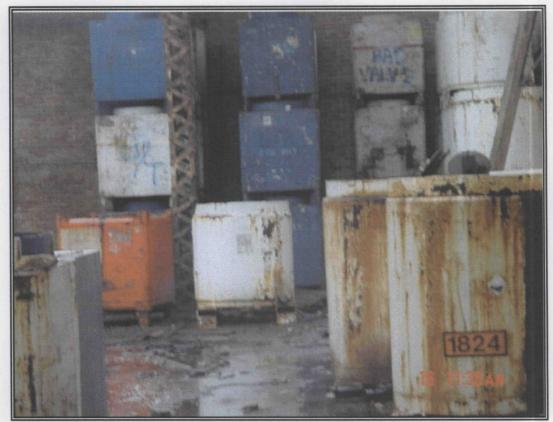


Photo 7 (EPA Site Visit, 16 May 2002) - Stacked chemical totes located in Room 5.

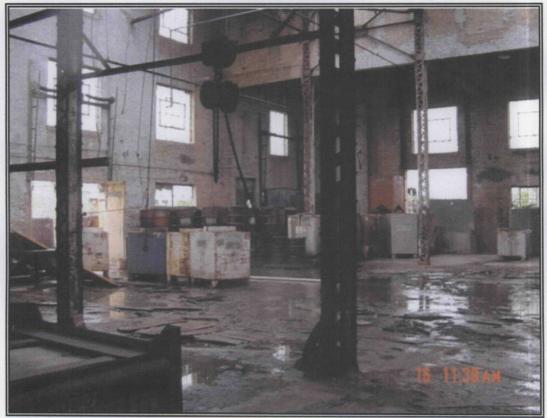


Photo 8 (EPA Site Visit, 16 May 2002) - Containers and drums located in Room 5.

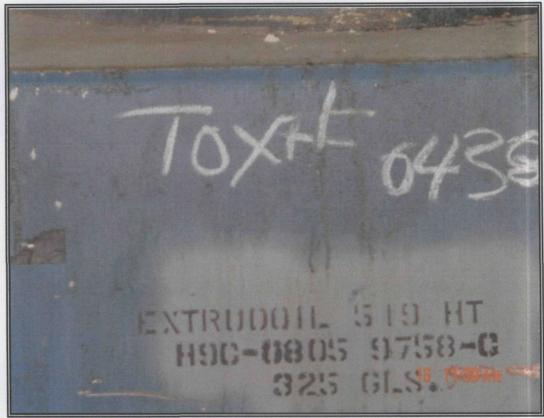


Photo 9 (EPA Site Visit, 16 May 2002) - Information label on one of the drums located in Room 5.

Photo 10 (EPA Site Visit, 16 May 2002) - Trench drain located in the floor of Room 5. The drain originates near the 20,000 gallon ASTs and is filled with a black oily liquid.

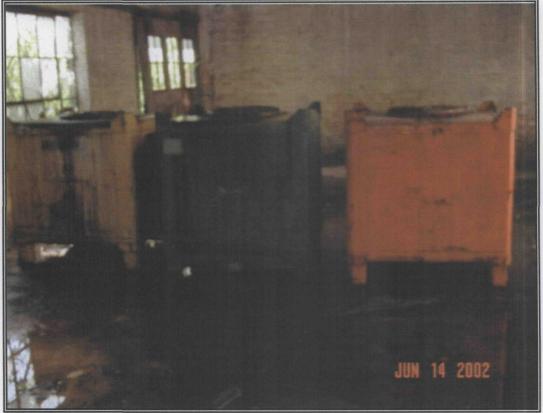


Photo 1 (Site Assessment Preliminary Visit, 14 June 2002) - Typical chemical totes found at the site, approximately 345 gallons.

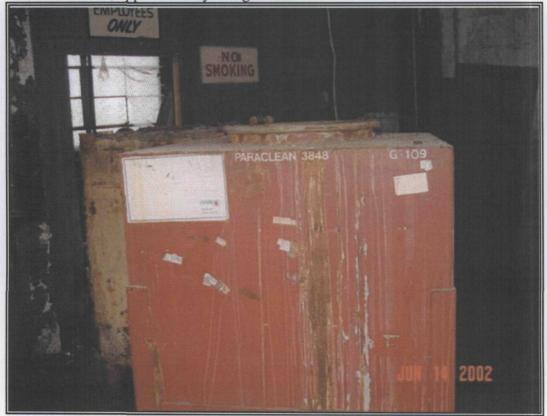


Photo 2 (Site Assessment Preliminary Visit, 14 June 2002) - Closer view of corrosion on the exterior of a typical chemical tote.

Photo 3 (Site Assessment Preliminary Visit, 14 June 2002) - Sump and suspected power generating equipment located in the Power Generation Room.

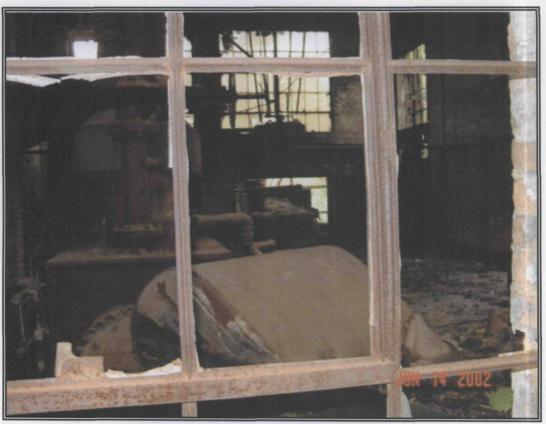


Photo 4 (Site Assessment Preliminary Visit, 14 June 2002) - View of HVAC equipment and AST in the northeast corner of the Stack Building. Note that the room has a layer of hardened sludge present.

Photo 5 (Site Assessment Preliminary Visit, 14 June 2002) - Ponding of surface water in the area where the demolished buildings were.



Photo 6 (Site Assessment Preliminary Visit, 14 June 2002) - Water tower platform and piping, the tank has been removed.

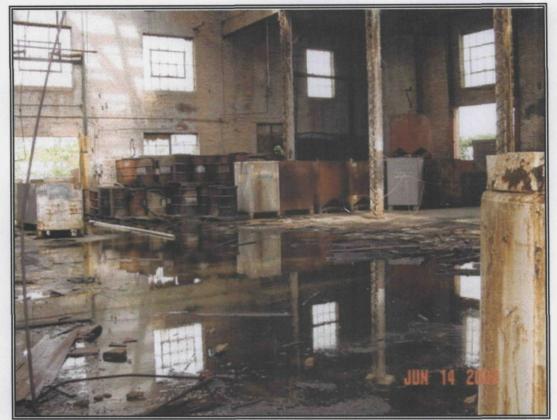


Photo 7 (Site Assessment Preliminary Visit, 14 June 2002) - Room 5 facing west, note the drum storage area.

Photo 8 (Site Assessment Preliminary Visit, 14 June 2002) - View of damaged roof in Room 5.

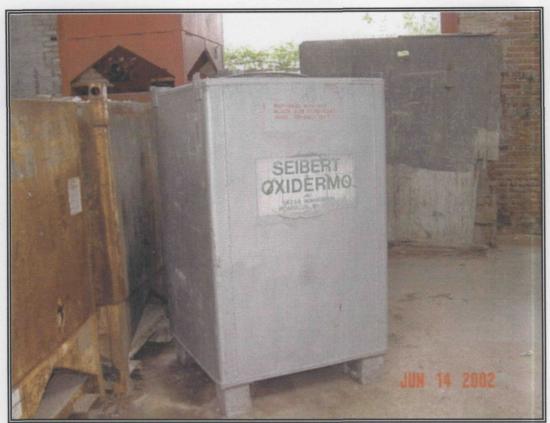


Photo 9 (Site Assessment Preliminary Visit, 14 June 2002) - Containers located in Room 5.

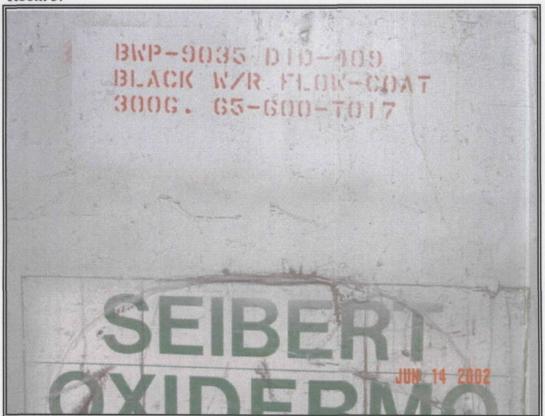


Photo 10 (Site Assessment Preliminary Visit, 14 June 2002) - View of label on container featured in Photo 9.

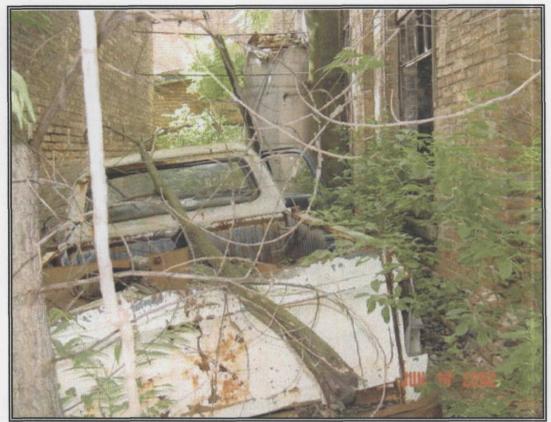


Photo 11 (Site Assessment Preliminary Visit, 14 June 2002) - Abandoned truck and insulated tank (located in the background) on east side of the Stack Building.

Photo 12 (Site Assessment Preliminary Visit, 14 June 2002) - Oily discharge from Drum Storage Area. This discharge flows directly to the drainage ditch located along the western boundary of the site.

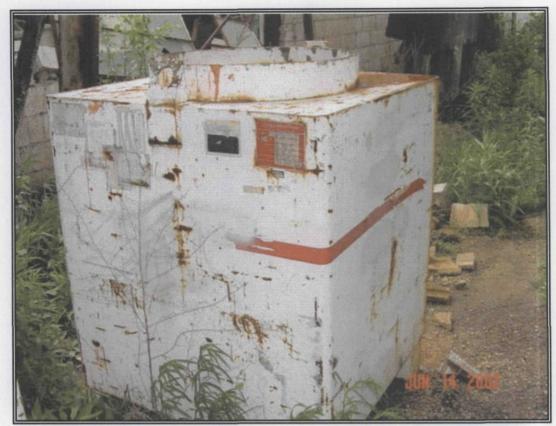


Photo 13 (Site Assessment Preliminary Visit, 14 June 2002) - Chemical tote located near water tower.

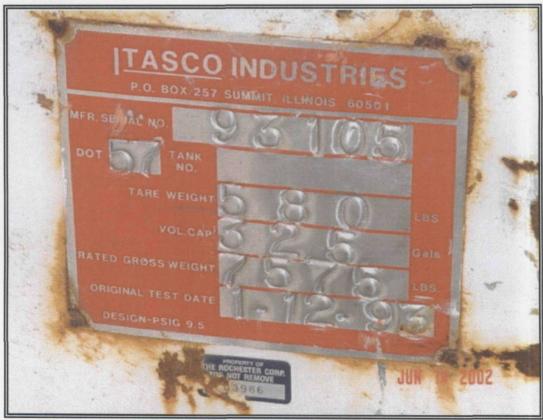


Photo 14 (Site Assessment Preliminary Visit, 14 June 2002) - Label on tote featured in Photo 13.

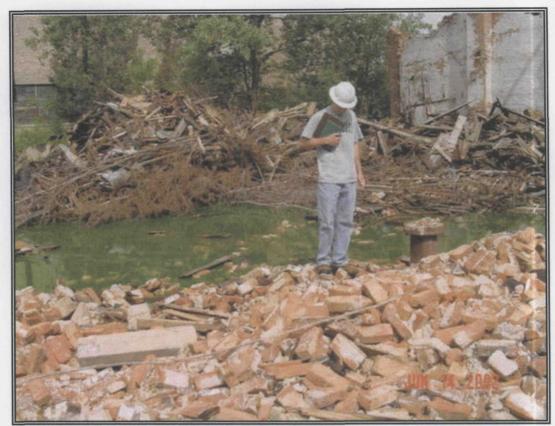


Photo 15 (Site Assessment Preliminary Visit, 14 June 2002) - Unknown pipe along former east wall of demolished building.

Photo 16 (Site Assessment Preliminary Visit, 14 June 2002) - Containers located in Room 1 near the washing machine and sump.

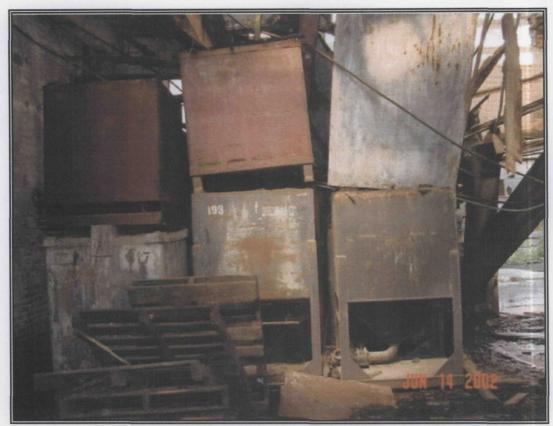


Photo 17 (Site Assessment Preliminary Visit, 14 June 2002) - Stacked containers and damaged roof located in Room 3.

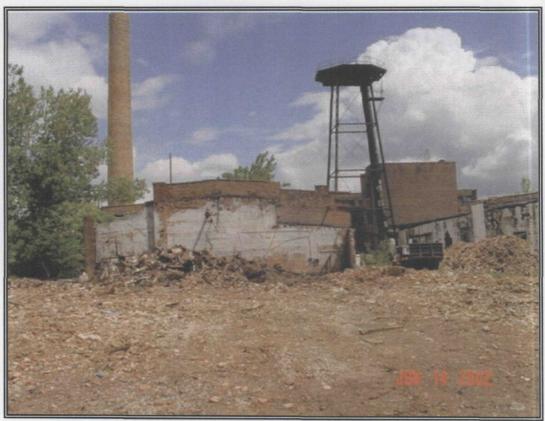


Photo 18 (Site Assessment Preliminary Visit, 14 June 2002) - View of the site facing north.

Photo 1 (Site Assessment, 24 June 2002) - Possibly corroded rocks located outside of Room 4.

Photo 2 (Site Assessment, 24 June 2002) - Damaged floor located in the upstairs room, which is directly above Room 4.

Photo 3 (Site Assessment, 24 June 2002) - Fiberglass AST located upstairs labeled as Tung Oil.

Photo 4 (Site Assessment, 24 June 2002) - Fiberglass AST located upstairs labeled as Crude Coconut Oil.

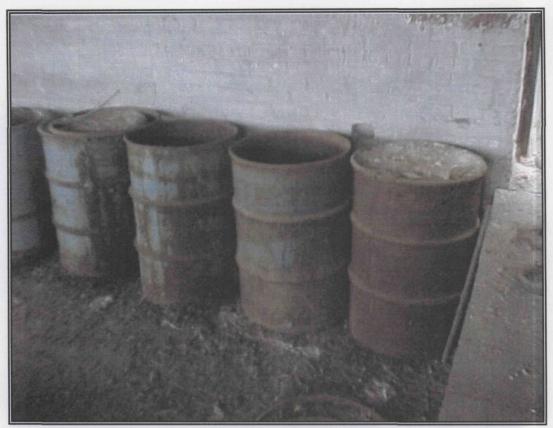


Photo 5 (Site Assessment, 24 June 2002) - Drums located upstairs filled with solids.

Photo 6 (Site Assessment, 24 June 2002) - Damaged pipewrap located upstairs.

Photo 7 (Site Assessment, 24 June 2002) - Sheen and oily mousse on the standing water located near the 20,000 gallon ASTs in Room 5.

Photo 8 (Site Assessment, 24 June 2002) - Transite panels located on the south side of the Stack Building.

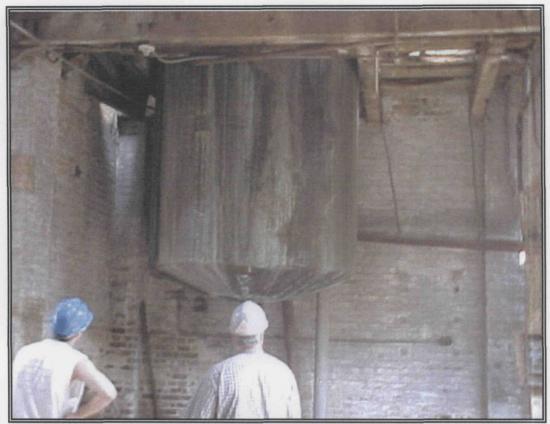


Photo 9 (Site Assessment, 24 June 2002) - Unknown tank that originates on the 2nd floor, as seen from Room 3.

Photo 10 (Site Assessment, 24 June 2002) - Containers and drums located in Room 5. The container with a spraypainted "6" is where sample IWI-6 was collected.

Photo 11 (Site Assessment, 24 June 2002) - Heat exchangers located in the Stack Building.

Photo 12 (Site Assessment, 24 June 2002) - Sludge buildup located in the Stack Building.

APPENDIX B

ANALYTICAL DATA

Weston Solutions In	C.	age a particle	<u> </u>	Terrore	*Newsork			-		المسورا	ACE TO	chnolo	gies In	C.
750 E Bunker Ct, Suite 500									1680 Lake Front Circle, Ste. B					
Vernon Hills, IL 60061		·— ·-····								i	-	dlands, T		
		· ···· - · · · · · ·						 				81) 363-223		
Tel: (847) 918-4094				;					 		<u> </u>			·
Fax: (847) 918-4055									<u> </u>		Fax : (2	81) 298-578	,	
					!				1		Date:	7/15/2002	}	
Attn: Ms. Tonya Balla				VOA8260B & TCLP VOA8260B							Project Nat	ne: IWI/ITA	SCO	
			†											<u> </u>
Episode #:			8067	<u> </u>	·				 					
Lab Sample ID			001	002	003	004	005	006	007	800	009	010	011	12
Client Sample I D			IWI-5	IWI-6	IWI-7	IWI-8	IWI-9	IWI-10	IWI-11	IWI-12	IWI-1	IWI-2	IWI-3	IWI-4
Sample Matrix			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date Sampled			6/24/2002	6/24/2002		6/24/2002	6/24/2002	6/24/2002	6/24/2002		6/24/2002	6/24/2002	6/24/2002	6/24/2002
Time Sampled			1345	1400	1415	1430	1445	1500	1515	1530	1300	1315	1325	1335
o oumpiou	Units	RL/5g dry		. 100				.500	.5.0		555			- 300
VOA 8260B		Jantitation L	_: -:						-				 	
1,1,1,2-Tetrachloroethane	ug/kg	120.0						:	 	:	<200000	<120	<20000	
1,1,1-Trichloroethane	ug/kg	120.0								!	<200000	<120	<20000	:
1,1,2,2-Tetrachloroethane	ug/kg	120.0								-	<200000	<120	<20000	·
1,1,2-Trichloroethane	ug/kg	120.0							•		<200000	<120	<20000	
1,1-Dichloroethane	ug/kg	120.0									<200000	<120	<20000	
1,1-Dichloroethene	ug/kg	120.0									<200000	<120	<20000	
1,1-Dichloropropene	ug/kg	120.0									<200000	<120	<20000	1
1,2,3-Trichlorobenzene	ug/kg	120.0	_,								<200000	<120	<20000	
1,2,3-Trichloropropane	ug/kg	1.20.0							1		<200000	<120	<20000	
1,2,4-Trichlorobenzene	ug/kg	120.0									<200000	<120	<20000	
1,2,4-Trimethylbenzene	ug/kg	120.0									<200000	<120	70000	
1,2-Dibromo-3-chloropropane	ug/kg	120.0			_				:		<200000	<120	<20000	
1,2-Dibromoethane	ug/kg	120.0									<200000	<120	<20000	
1,2-Dichlorobenzene	ug/kg	1:20.0									<200000	<120	<20000	
1,2-Dichloroethane	ug/kg	1:20.0									<200000	<120	<20000	! !
1,2-Dichloropropane	ug/kg	120.0									<200000	<120	<20000	:
1,3,5-Trimethylbenzene	ug/kg	120.0									21000000	<120	6800	1
1,3-Dichlorobenzene	ug/kg	120.0									<200000	<120	<20000	
1,3-Dichloropropane	ug/kg	120.0		··							<200000	<120	<20000	
1,4-Dichlorobenzene	ug/kg	120.0								!	<200000	<120	<20000	
1-Chlorohexane	ug/kg	120.0 120.0								·	<200000 <200000	<120 <120	<20000 <20000	
2,2-Dichloropropane	ug/kg	620									2200000	7600	<100000	
2-Choroethyl vinyl ether	ug/kg ug/kg	120.0						· · · · · · · · · · · · · · · · · · ·			<200000	<120	<20000	
2-Chlorotoluene	ug/kg	120.0				·-·-				:	<200000	<120	<20000	
2-(fe)xanone	ug/kg	620									<1000000	<620	<100000	
4-Chiprotoluene	ug/kg	120.0									<200000	<120	<20000	
4-Methyl-2-pentanone	ug/kg	620									1100000	2100	<100000	
Agatone	ug/kg	620							-		<1000000	5500	<100000	!
Acrylonitrile	ug/kg	620							i		<1000000	<620	<100000	
Benzene	ug/kg	120.0									<200000	<120	<20000	

Episode #:			8067		i				· · · · · · · · · · · · · · · · · · ·					
Lab Sample ID	-	····	001	002	003	004	005	006	007	008	009	010	011	12
Client Sample I D			IWI-5	IWI-6	IWI-7	IWI-8	IWI-9	IWI-10	IWI-11	IWI-12	IWI-1	IWI-2	IWI-3	IWI-4
				1981-0	1881-7	1441-0	1001-3	1441-10	1991-11	1441-12	[441-1	1441-7	1441-2	1881-4
Sample Matrix		·- ·	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date Sampled			6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/20
Time Sampled			1345	1400	1415	1430	1445	1500	1515	1530	1300	1315	1325	1335
—	Units	RL/5g dry						 				!~		<u> </u>
VOA 8260B(Contd)													~ · · — · · · · · — · · ·	
Bromobenzene	ug/kg	120.0						!		-	<200000	<120	<20000	
Bromochloromethane	ug/kg	120.0							1		<200000	<120	<20000	
Bromodichloromethane	ug/kg	120.0									<200000	<120	<20000	
Bromotorm	ug/kg	120.0							 		<200000	<120	<20000	
Bromomethane	ug/kg	120.0									<200000	<120	<20000	i
Carbon disulfide	ug/kg	120.0							 		<200000	210	<20000	
Carbon tetrachloride	ug/kg	120.0			···				·		<200000	<120	<20000	
Chlorobenzene	ug/kg ug/kg	120.0									<200000	<120	<20000	
Chloroethane	ug/kg ug/kg	120.0							·		<200000	<120	<20000	
Chloroform		120.0							<u>-</u>					
	ug/kg										<200000 <200000	<120	<20000	
Chloromethane	ug/kg	120.0										<120	<20000	<u> </u>
cis-1,2-Dichloroethene	ug/kg	120.0									<200000	220	<20000	
cis-1,3-Dichloropropene	ug/kg	120.0									<200000	<120	<20000	
Dibromochloromethane	ug/kg	120.0									<200000	<120	<20000	L
Dibromomethane	ug/kg	1:20.0	·								<200000	<120	<20000	
Dichlorodifluoromethane	ug/kg	1:20.0									<200000	<120	<20000	
Ethyl benzene	ug/kg	120.0									860000	120	390000	<u> </u>
Hexachlorobutadiene	ug/kg	120.0									<200000	<120	<20000	
odomethane	ug/kg	120.0									<200000	<120	<20000	
sopropylbenzene	ug/kg	120.0					-				2200000	<120	<20000	
n/p-xylene	ug/kg	250.0									4400000	430	1600000	
Methyl t-Butylether	ug/kg	120.0									<200000	<120	<20000	
Methylene chloride	ug/kg	120.0									<200000	54	<20000	
n-Butylbenzene	ug/kg	120.0		·							2500000	110	25000	1
n-Propylbenzene	ug/kg	120.0				-					11000000	<120	140000	: -
Naphthalene	ug/kg	120.0									4600000	210	51000	
-Xylene	ug/kg	120.0									4900000	170	380000	·
D-Isopropyltoluene	ug/kg	120.0									670000	<120	12000	
sec-Butylbenzene	ug/kg ug/kg	120.0									1200000	<120	<20000	+
														1
Styrene	ug/kg	120.0									<200000	<120	<20000	
ert-Butylbenzene	ug/kg	120.0									<200000	<120	11000	
Tetrachloroethene	ug/kg	120.0									<200000	<120	82000	<u> </u>
Poluene	ug/kg	120.0									650000	6900	400000	ļ
ans-1,2-Dichloroethene	ug/kg	120.0									<200000	<120	<20000	
rans-1,3-Dichloropropene	ug/kg	120.0									<200000	<120	<20000	
Prichloroethene	ug/kg	120.0									<200000	<120	<20000	į.
Dichlorofluoromethane	ug/kg	120.0									<200000	<120	<20000	
Inyl Acetate	ug/kg	620.0									<1000000	<620	<100000	
dinyl chloride	ug/kg	120.0									<200000	<120	<20000	

ومعمون المنصورة والمسا	ر العبورية () ()	-	التاميية	المسجوا	-	-	-	-		-	Andread A		-	-
Episode #:			8067			I.			_					i
Lab Sample ID			001	002	003	004	005	006	007	008	009	010	011	12
Client Sample I D	· · · · · · · · · · · · · · · ·		IW 1-5	IWI-6	IW1-7	IWI-8	IWI-9	IWI-10	IWI-11	IWI-12	IWI-1	IWI-2	IWI-3	IWI-4
Sample Matrix			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date Sampled			6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002
Time Sampled			1345	1400	1415	1430	1445	1500	1515	1530	1300	1315	1325	1335
	Units	RL												
TCLP VOA 8260B				:					 					
1,1-Dichloroethene	ug/L	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	<20	<20
1,2-Dichloroethane	ug/L	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	<20	<20
2-Butanone	ug/L	25	<100	<100	<100	<100	<100	<100	1500	<100	3700	<120	<100	<100
Benzene	ug/L	5_	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	<20	<20
Carbon tetrachloride	ug/L	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	<20	<20
Chlorobenzene	ug/L	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	<20	<20
Chloroform	ug/L	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	<20	<20
Tetrachloroethene	ug/L	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	210	<20
Trichloroethene	ug/L	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	<20	<20
Vinyl chloride	ug/L	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<25	<20	<20

Weston Solutions	Iric.							i			ACE T	echno	ogies	nc.
750 E Bunker Ct, St	uite 500							<u> </u>			+		t Circle,	
Vernon Hills, IL 600	961										The Wo	odlands	TX 781	130
Tel: (847) 918-4094								 			Phone: (2	281) 363-2	233	
Fax: (847) 918-4055											Fax : (2	281) 298-5	784	
											Date:	7/15/2002	T	
Attn: Ms. Tonya Ba	lla				TCLP SVC	A8270C					Project Na	me: [W]/i]	TASCO	
Episode #:			8067										ļ 	
Lab Sample ID			001	002	003	004	005	006	007	800	009	010	011	12
Client Sample I D			IWI-5	IWI-6	IWI-7	IWI-8	IWI-9	IWI-10	IWI-11	IWI-12	IWI-1	IWI-2	IWI-3	IWI-4
Sample Matrix			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date Sampled			6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002
Time Sampled			1345	1400	1415	1430	1445	1500	1515	1530	1300	1315	1325	1335
	Units	RL												i
TCLP SVOA 8270C				:							i			
1,4-Dichlorobenzene	u g/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
2,4,5-Trichlorophenol	u g /L	120	<120	<120	<120	<120	<120	<120	<120	<120	<120	<120	<120	<120
2,4,6-Trichlorophenol	u g/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
2,4-Dinitrotoluene	u g/L	50	<50_	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
2-Methylphenol	u g/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
3+4-Methylphenol	u g/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<5 0	<50
Hexachlorobenzene	u g/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Hexachlorobutadiena	u g/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Hexachloroethane	u g/l _	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Nitrobenzene	ug/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Pentachlorophenol	u g/L	120	<120	<120	<120	<120	<120	<120	<120	100	<120	<120	<120	<120
Pyridine	ug/L_	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50

Weston Solutions In	 . C.		1010000								ACE I	echno	ogies	Inc.
750 E Bunker Ct, Suite			 		<u>.</u>						├	ke Fron		
Vernon Hills, IL 60061		<u> </u>	 	!			† 			 	 	odlands		
Tel: (847) 918-4094			+		 	ļ ———	-					281) 363-2		T
			-	1	ļ	ļ						<u> </u>		<u> </u>
Fax: (847) 918-4055			: -	:	<u> </u>		ļ	ļ		ļ		281) 298-5		
			<u> </u>			J	<u> </u>				Date:	7/15/2002	 	
Attn: Ms. Tonya Balla				Total TAL	Metals & T	CLP RCRA	Metals				Project Na	ame: IWI/IT	ASCO	-
Episode #:			8067											
Lab Sample ID	-,		001	002	003	004	005	006	007	008	009	010	011	12
Client Sample I D			1W1-5	IWI-6	IWI-7	IWI-8	IWI-9	JWI-10	IWI-11	IW1-12	IW1-1	IW1-2	IWI-3	IWI-4
											-			
Sample Matrix			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date Sampled			6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002
Time Sampled			1345	1400	1415	1430	1445	1500	1515	1530	1300	1315	1325	1335
	Units	RI.									1			
Total TAL Metals														
Aluminum	rrçı/kg	6.70	10000	74	20	24	1700	290	220	6.7	1800	330	52	3000
Antimony	mg/kg	4.0	110	<4	<4	<4	24	5.4	31	<4	74	68	<3.9	2200
Arsenic	mg/kg	0.67	14.5	<0.662	<0.662	<0.667	1.93	3.27	<0.667	<0.662	1.42	1.49	<0.658	7.53
Barium	mg/kg	0.67	2100	17	3.3	18	370	110	490	<0.66	720	650	100	1400
Berryllium Cadmium	mg/kg	0.333	<0.329	<0.331	<0.331	<0.333	.809	<0.336	<0.333	<0.331	36.3	<0.329	<0.329	<0.329
Calcium	mg/kg mg/kg	0.333 67.0	30.9 14000	<0.331 290	<0.331 9400	<0.331 180	5.62 3500	0.486 1200	9.99 6200	<0.331 97	.587 75	3.53 5900	3.73 210	0.367 5800
Chromium	mg/kg	0.67	500	<0.66	0.78	1.8	290	9.6	29	<0.66	14000	23	52	27
Cobalt	mg/kg	0.67	10	<0.66	<0.66	<0.67	12	16	1.8	<0.66	<0.66	1.7	0.89	<0.66
Copper	mg/kg	1.3	290	180	5.2	3.9	38	13	15	2.7	4	25	80	6.9
Iron	mg/kg	6.7	15000	200	140	160	2100	5700	380	7.4	350	1500	75	3300
Lead	mg/kg	0.667	1770	1.87	15900	29.1	4450	40.4	280	0.697	112	79.7	101	5860
Magnesiurn	mg/kg	67.0	3800	<66	84	78	1500	460	190	1000	<66	400	<66	4700
Manganese	mg/kg	0.67	110	1.6	1.4	1.9	50	42	47	<0.66	4.4	35	2.3	95
Mercury	mg/kg	0.03	0.71	<0.03	<0.03	< 0.03	0.06	<0.03	0.03	0.03	<0.03	0.03	0.17	0.03
Nickel	mg/kg	1.3	25	<1.3	<1.3	<1.3	1.8	<1.3	2.6	<1.3	<1.3	<1.3	<1.3	30
Potassim	mg/kg	67.0	800	<66	<66	<67	160	<67	110	<66	<66	<66	950	100
Selenium	mg/kg	0.467	1.62	0.676	0.803	0.499	0.804	1	0.803	0.536	<0.461	0.986	0.593	1.45
Silver	mg/kg	0.33	2.1	<0.33	<0.33	<0.33	0.91	<0.34	<0.33	<0.33	46	<0.33	<0.33	<0.33
Sodium Thalium	mg/kg	67.0 0.333	3700 <0.329	89 <0.331	330 <0.331	780 <0.333	1300 < 0.329	210 <0.336	1300 < 0.333	430	<66 <0.329	500 <0.329	650	370
Vanadium	mg/kg mg/kg	0.333	3.7	<0.66	1.1	.83	1.6	<0.67	<0.67	<0.331 <0.66	15	0.329	<0.329 <0.66	<0.329
Zinc	mg/kg	1.3	1600	4.9	8	1700	280	69	2000	18	140	340	130	<0.66 800
5	9, 49	1	1000	7.5		1100			2000			340		
TCLP RCRA Metals					 									~
Arsenic	rig/L	0.05	<.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Barium	nıg/L	0.2	1.49	0.299	<0.2	<0.2	0.423	0.289	3.12	<0.2	0.724	0.28	<0.2	1.96
Cadmium	r1g/L	0.05	0.085	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Onromium	rng/L	0.1	0.278	<0.1	<0.1	<0.1	<0.1	<0.1	0.463	<0.1	42.4	<0.1	<0.1	<0.1
Dead	rng/L.	0.05	4.64	<0.05	281	0.313	4.95	0.085	0.072	0.173	<0.05	0.094	<0.05	7.18
														- 004
Mercury Selenium	rng/L.	0.001 0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05	<.001 <0.05

Weston Solutions I	ric.		- American				<u> </u>	<u> </u>			ACE T	echnolo	gies in	C.
750 E Bunker Ct, Sui	te 500										1680 La	ke Front	Circle, St	e. B
Vernon Hills, IL 6000									<u> </u>				TX 78130	
Tel: (847) 918-4094			 					<u> </u>	 			281) 363-22		
Fax: (847) 918-4055									 			281) 298-57		
								!			Date:	7/15/2002		
Attn: Ms. Tonya Ball	a				PCB's			<u> </u>	1		+	me: IWI/ITA	sco	+
Esisado #.			9067		<u> </u>	·		1		<u> </u>				<u> </u>
Episode #: Lab Sample ID			8067	000	000	004	005	000	007	000	000	040	044	40
			001	002	003	004	005	006	007	800	009	010	011	12
Client Sample I D			IWI-5	IWI-6	IW1-7	IWI-8	IWI-9	IWI-10	IWI-11	IWI-12	[WI-1	IWI-2	IWI-3	IWI-4
Sample Matrix			Soil											
Date Sampled				6/24/2002				·			6/24/2002		6/24/2002	6/24/2002
Time Sampled			1345	1400	1415	1430	1445	1500	1515	1530	1300	1315	1325	1335
	Units	RL							: : :					· · · · · · · · · · · · · · · · · · ·
PCB's		500.0		-500	-500	-500			-500	-500		-500	-500	
Aroclor 1016 Aroclor 1221	ug/kg	500.0	<500	<500 <500	<500 <500	<500	<500	<500	<500	<500 <500	<500	<500	<500	<500
Aroclor 1232	ug/kg	500.0 500.0	<500 <500	<500 <500	<500	<500 <500	<500 <500	<500 <500	<500 <500	<500	<500 <500	<500 <500	<500 <500	<500 <500
Aroclor 1242	ιg/kg ιg/kg	500.0	<500	<500	<500	<500	<500	<500	<500	<500 <500	<500	<500	<500 <500	<500
Aroclor 1248	ιg/kg	500.0	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Aroclor 1254	ιg/kg	500.0	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Aroclor 1260	ιg/kg	500.0	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
									 			· ·		
														+
								<u> </u>						
00														
0														
0														
7														<u> </u>
										· 				<u> </u>

Weston Solution	s Inc.	1000 0000			- Should					<u></u>	ACE T	echnolo	gies Inc	<u> </u>
750 E Bunker Ct, S	Suite 500		·••·							 	÷ · · · · · · · · · · · · · · · · · · ·		Circle, Ste	
Vernon Hills, IL 60	0051			 	·					 	The Wo	odlands,	TX 78130	
Tel: (847) 918-4094							 	 		<u> </u>		281) 363-22		
Fax: (847) 918-4055				;								281) 298-57		
			!		÷						Date:	7/15/2002		
Attn: Ms. Tonya B	alla				RCI, pH &	Paint Filter	Test				Project Na	me: IWI/ITA	SCO	
Episode #:			8067											
Lab Sample ID			001	002	003	004	005	006	007	008	009	010	011	12
Client Sample I D			IWI-5	IWI-6	IWI-7	IWI-8	IWI-9	IWI-10	IWI-11	IWI-12	IWI-1	IWI-2	fWI-3	IWI-4
Sample Matrix			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date Sampled			6/24/2002	6/24/2002	6/24/2002	6/24/2002		6/24/2002			6/24/2002	6/24/2002	6/24/2002	6/24/2002
Time Sampled	:		1345	1400	1415	1430	1445	1500	1515	1530	1300	1315	1325	1335
	Lnits	RL/5g dr	y:									,		
Reactive Cyanide	nig/kg	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Reactive Sulfide	mg/kg	1.0	385	302	169	152	445	390	298	485	242	259	212	261
Flash Point	Degrees F		90	105	95	100	155	90	75	120	85	90	85	90
pH	5.U.		5.47	4.96	5.52	10.7	6.63	5.55	5.55	5.5	6.28	4.5	8.8	5.94
Paint Filter Test	Pass/Fail		Pass	Fail	Pass	Pass	Pass	Pass	Pass	Pass	Fail	Fail	Fail	Pass
	Note:	Pass = No	o Free Liquid	Present										
			e Liquid Pres											
			 							-				
												!		
				<u> </u>										
			+											
)						i !								
0														

Weston Solutions In	da spæni—— C.	e ett i							ACE Te	chnologie	s inc.	The report of th
750 E Bunker Ct, Suite	500								1680 Lake	Front Circ	le, Ste. B	
Vernon Hills, IL 60061		 	 							llands, TX		
Tel: (847) 918-4094			<u></u>						Phone: (28			+
Fax: (847) 918-4055			ļ				 .			1) 298-5784		$+$ \sim
Fax. (047) 710-4033				<u> </u>					Date:	7/10/2002	!	
Attn: Ms. Tonya Balla				VOA8260E	& TCLP V	OA8260B			+ -	e: IWI/ITASCO		
	····	:							, , , , , , , , , , , , , , , , , , , ,			00
Episode #:			8054						 			
Lab Sample ID		· · · · · · · · · · · · · · · ·	001	002	003	004	004DL1	004	+			
Client Sample I D	-		IWI - 13	IWI - 13D	IWI - 14	IWI - 15	IWI - 15	IWI - 15	 			
									+	-		
Sample Matrix			Soil	Soil	Soil	Soil ;	Soil	Soil	†			
Date Sampled			6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	i		i	
Time Sampled			16:15	16:30	17:00	17:15	17:15	17:15	 			
Percent Moisture			50.50	32.72	35.44	68.40	68.40	68.40	 			
	Units	RL/5g dry						(Medium-Leve			1	
VOA 8260B		TELOG CITY					(Dilated Harry	Analysis)	· †			
1,1,1,2-Tetrachloroethane	ug/kg	5.0	<14	<11	<11	<22	<130	<400	+			
1,1,1-Trichloroethane	ug/kg	5.0	<14	<11	<11	<22	<130	<400	 			+
1,1,2,2-Tetrachloroethane	ug/kg	5.0	<14	<11	<11	<22	<130	<400	1			
1,1,2-Trichloroethane	ug/kg	5.0	<14	<11	<11	<22	<130	<400	T			
1,1-Dichloroethane	ug/kg	5.0	<14	<11	<11	<22	<130	<400				
1,1-Dichloroethene	ug/kg	5.0	<14	<11	<11	<22	<130	<400				
1,1-Dichloropropene	ug/kg	5.0	<14	<11	<11	<22	<130	<400		<u> </u>	·	
1,2,3-Trichlorobenzene	ııg/kg	5.0	<14	<11	<11	<22	<130	<400	<u> </u>	<u> </u>		
1,2,3-Trichloropropane	ug/kg	5.0	<14	<11	<11	<22	<130	<400				:
1,2,4-Trichlorobenzene	ug/kg	5.0	<14	<11	<11	<22	<130	<400		<u> </u>		
1,2,4-Trimethylbenzene	ug/kg	5.0	<14	<11	58	1900	<130	<400				
1,2-Dibromo-3-chloropropane	ug/kg	5.0	<14	<11	<11	<22	<130	<400				
1,2-Dibromoethane	Lig/kg	5.0	<14	<11	<11	<22	<130	<400				
1,2-Dichlorobenzene	u g/kg	5.0	<14	<11	<11	<22	<130	<400				
1,2-Dichloroethane	⊍g/kg	5.0	<14	<11	<11	<22	<130	<400	-			<u> </u>
1,2-Dichloropropane	⊍g/kg	5.0	<14	<11	<11	<22	<130	<400			· — —	
1,3,5-Trimethylbenzene	Jg/kg	5.0	<14	<11	35	1600 <22	<130 <130	<400				
1,3-Dichlorobenzene	Jg/kg	5.0 5.0	<14	<11 <11	<11 <11	<22	<130	<400 <400	 			
1,3-Dichloropropane 1,4-Dichlorobenzene	Jg/kg	5.0	<14 <14	<11	<11	<22	<130	<400	+			
1,4-Dichloropenzene 1-Chlorohexane	Jg/kg	5.0	<14	<11	<11	<22	<130	<400				
2,2-Dichloropropane	ıg/kg	5.0	<14	<11	<11	<22	<130	<400				+
2-Butanone	18/kg	25	<72		<53	<110	<660	<790	 			+
2-Chloroethyl vinyl ether	g/kg.	5.0	<14	<11	<11	<22	<130	<400	 			
2-Chlorotoluene	Jg/kg	5.0	<14	<11	<11	<22	<130	<790	<u> </u>	<u> </u>		
2-Hexanone	ıg/kg	25	<72	<57	<53	<110	<660	<400	<u> </u>			
4-Chlorotoluene	Jg/kg	5.0	<14	<11	<11	<22	<130	<790	 			!
4-Methyl-2-pentanone	ıg/kg	25	<72	<57	<53	<110	<660	<790				
Acetone	.ıg/kg	25	99	150	83	260	<660	<400				

Calaada M.	VIA CHES	-	0054	-	<u> </u>		-		التعيية ا		-	-		
Episode #:	 -		8054					 	~					
Lab Sample ID			001	002	003	004	004DL1	004						
Client Sample I D			IWI - 13	IWI - 13D	IWI - 14	IWI - 15	IWI - 15	IWI - 15		!		}		- 1
										1				
Sample Matrix			Soil	Soil	Soil	Soil	Soil	Soil						
Date Sampled			6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002	6/24/2002			1			
Time Sampled			16:15	16:30	17:00	17:15	17:15	17:15			<u> </u>			
Percent Moisture			50.50	32.72	35.44	68.40	68.40	68,40						q
- Croent Moistare	Linia	DL (C - d-		32.72	33.44	00.40			- 					
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	Units	RL/5g dry				-	(Diluted Run)	(Medium-Level						
VOA 8260B(Contd)		 					1400	Analysis)						d
Acrylonitrile	ıg/kg	25	<14	<11	<11	<22	<130	<400	·					
Benzene	ıg/kg	5.0	<14	<11	<11	7.8	<130	<400						
Bromobenzene	1g/kg	5.0	<14	<11	<11	<22	<130	<400						
Bromochloromethane	ıg/kg	5.0	<14	<11	<11	<22	<130	<400						
Bromodichloromethane	ug/kg	5.0	<14	<11	<11	<22	<130	<400		· · · · · · · · · · · · · · · · · · ·				[
Bromoform	.lg/kg	5.0	<14	<11	<11	<22	<130	<400						
Bromomethane	₁g/kg	5.0	<14	<11	<11	<22	<130	<400						
Carbon disulfide	ug/kg	5.0	<14	<11	<11	<22	<130	<400	~					
Carbon tetrachloride	ng/kg	5.0	<14	<11	<11	<22	<130	<400						
Chlorobenzene	ıg/kg	5.0	<14	<11	<11	<22	<130	<400	·					
Chloroethane	₁g/kg	5.0	<14	<11	<11	<22	<130	<400						
Chloroform	ıg/kg	5.0	<14	<11	<11	<22	<130	<400						
Chloromethane	ıg/kg	5.0	<14	<11	<11	<22	<130 <130	<400						
cis-1,2-Dichloroethene	ıg/kg	5.0	<14 <14	<11	<11 <11	<22 <22	<130	<400 <400	·					
cis-1,3-Dichloropropene Dibromochloromethane	Jg/kg	5.0	<14	<11 <11	<11	<22	<130	<400				<u> </u>		
Dibromomethane	Jg/kg	5.0 5.0	<14	<11	<11	<22	<130	<400						
Dichlorod fluoromethane	Jg/kg	5.0	<14	<11	<11	<22	<130	<400						
Ethyl benzene	Jg/kg	5.0	14	35	<11	4200	<130	<400						
Hexachlorobutadiene	ום/kg β//Bנו	5.0	<14	<11	<11	<22	<130	<400						
lodomethane	18/kg	5.0	<14	<11	<11	<22	<130	<400						
Isopropylbenzene	Ja/ka Ja/ka	5.0	<14	<11	<11	180	<130	<400					 -	
m/p-xylene	18/kg	10.0	50	140	27	5900	<260	<400						
Methyl t-Butylether	18/kg	5.0	<14	<11		<22	<130	<400						
Methylene chloride	Jg/kg	5.0	<14	110	<11	<22	<130	<400						
n-Butylbenzene	18/kg	5.0	<14	<11	<11	<22	<130	<400						
n-Propylbenzene	Jg/kg	5.0	<14	<11	4.8	<22	<130	<400						
Naphthalene	Jg/kg	5.0	<14	<11	<11	1100	<130	440						
o-Xylene	Jg/kg	5.0	20	70	17	4400	<130	<400						
p-Isopropyltoluene	⊌g/kg	5.0	<14	<11	<11	34	<130	<400						
sec-Butylbenzene	⊍g/kg	5.0	<14	<11	<11	<22	<130	<400						
Styrene	⊍g/kg	5.0	<14	<11	<11	<22	<130	<400						
tert-Butylbenzene	⊌g/kg	5.0	<14	<11	<11	<22	<130	<400						
Tetrachloroethene	⊔g/kg	5.0	<14	<11	<11	<22	<130	<400				ļ		
Toluene	ug/kg	5.0	<14	<11	<11	430	<130	<400						
trans-1,2-Dichloroethene	ug/kg	5.0	<14	<11	<11	<22	<130	<400						
trans-1,3-Dichloropropene	ug/kg	5.0	<14	<11	<11	<22	<130	<400						
Trichloroethene	Lig/kg	5.0	<14	<11	<11	<22	<130	<400						
Trichlorofluoromethane	ug/kg	5.0	<14	<11	<11	<22	<130	<400						
Vinyl Acetate	ug/kg	25.0	<72	<57	<53	<110	<660	<2000				 -		
Vinyl chloride			<14	<11	<11	<22	<130	<400				- 		
viriyi chionde	ug/kg	5.0		<11	<u> </u>	-22	<u> </u>	<u>~400</u>	·····			!		

	سيستور ووأسي			احسجار					-	السيط	-	The st	-	N pr 2000
Episode #:			8054							<u></u>				
Lab Sample ID			001	002	003	004								
Client Sample I D			IWI - 13	IWI - 13D	IWI - 14	IWI - 15								
Sample Matrix			Soil	Soil	Soil	Soil		_						 0
Date Sampled	1		6/24/2002	6/24/2002	6/24/2002	6/24/2002								0
Time Sampled			16:15	16:30	17:00	17:15								0
	Jnits	RL	ļ											0
TCLP VOA 8260B														0
1,1-Dichloroethene	ug/L	5	<5	<5	<5	<5								0
1,2-Dichloroethane	ug/L	5	<5	<5	<5	<5								
2-Butanone	ug/L	25	<25	<25	<25	<25								
Benzene	ug/L	5	<5	<5	<5	<5								
Carbon tetrachloride	ug/L	5	<5	<5	<5	<5								
Chlorobenzene	ug/L	5	<5	<5	<5	<5								
Chloroform	ug/L	5	<5	<5	<5	<5								
Tetrachloroethene	ug/L	5	<5	<5	<5	<5								
Trichloroethene	ug/L	5	<5	< 5	<5	<5								
Vinyl chloride	ug/L	5	<5	<5	<5	<5								

Weston Solutions In	C.		Marini				ACE	Technolo	gies Inc.	tyrestill	-
750 E Bunker Ct, Suite	500						1680 1	Lake Front (Circle, Ste. B		
Vernon Hills, IL 60061			1		-		The V	Voodlands, T	TX 78130		
Tel: (847) 918-4094			·				Phone:	(281) 363-223	3		
Fax: (847) 918-4055								(281) 298-578			
1 400			ļ 				Date:	7/10/2002	-		
Address B.C. Transaction Date		·			L						
Attn: Ms. Tonya Balla		· 		SVOA8270	C & TCLP	SVOA8270C	Project	Name: IWI/ITA	SCO		
Episode #:			8054								<u> </u>
Lab Sample ID		' !	001	002	003	004					
		 	 							 -	
Client Sample I D			IWI - 13	IWI - 13D	IWI - 14	IWI - 15					
Sample Matrix	-		Soil	Soil	Soil	Soil		+ +			
Date Sampled	·	·		6/24/2002	6/24/2002	6/24/2002					
Time Sampled			16:15	16:30	17:00	17:15	 	+		 	
Percent Moisture	 	<u></u>	50.50	32.72	35.44	68.40		+			
- Crock Worstare	Units	RL	30.30	02.72	33.44	00.40	 				
SVOA 8270C			 				 	-			
1,2,4-Trichlorobenzene	ug/kg	5000	<100000	<74000	<77000	<160000		+			
1,2-Dichlorobenzene	Lig/kg	5000	<100000	<74000	<77000	<160000					
1,3-Dichlorobenzene	ug/kg	5000	<100000	<74000	<77000	<160000	 	+			
1,4-Dichlorobenzene	ug/kg	5000	<100000	<74000	<77000	<160000					
2,2'-oxybis (1-Chloropropana)	ug/kg	5000	<100000	<74000	<77000	<160000		+			
2,4,5-Trichlorophenol	ιιg/kg	12000	<250000	<190000	<190000	<400000					
2,4,6-Trichlorophenol	Lig/kg	5000	<100000	<74000	<77000	<160000					
2,4-Dichlorophenol	ug/kg	5000	<100000	<74000	<77000	<160000					
2,4-Dimethylphenol	ug/kg	5000	<100000	<74000	<77000	<160000					
2,4-Dinitrophenol	ug/kg	12000	<250000	<190000	<190000	<400000					
2,4-Dinitrotoluene	ug/kg	5000	<100000	<74000	<77000	<160000					
2,6-Dinitrotoluene	ug/kg	5000	<100000	<74000	<77000	<160000					
2-Chloronaphthalene	ug/kg	5000	<100000	<74000	<77000	<160000					!
2-Chlorophenol	ug/kg	5000	<100000	<74000	<77000	<160000					
2-Methylnaphthalene	ug/kg	5000	<100000	<74000	<77000	<160000					<u> </u>
2-Methylphenol	ug/kg	5000	<100000	<74000	<77000	<160000					
2-Nitroaniline	ug/kg	12000	<250000	<190000	<190000	<400000	<u> </u>				
2-Nitrophenol	ug/kg	5000	<100000	<74000	<77000	<160000					
3,3'-Dichlorobenzidine	ug/kg	5000	<100000	<74000	<77000	<160000					
3-Nitroaniline	ug/kg	12000	<250000	<190000	<190000	<400000					
4,6-Dinitro-2-methylphenol	ug/kg	12000	<250000	<190000	<190000	<400000					
4-Bromophenyl phenyl ether	ug/kg	5000	<100000 <100000	<74000 <74000	<77000 <77000	<160000 <160000					
4-Chioro-3-methylphenol 4-Chioroaniline	ug/kg ug/kg	5000 5000	<100000	<74000	<77000	<160000	 				
4-Chlorophenyl phenyl ether	ug/kg	5000	<100000	<74000	<77000	<160000		+	•		
4-Methylphenol	ug/kg ug/kg	5000	<100000	<74000	<77000	<160000	 	+			
4-Nitroaniline	ug/kg	12000	<250000	<190000	<190000	<400000	<u> </u>				
4-Nitrophenol	ug/kg	12000	<250000	<190000	<190000	<400000					
Acenaphthene	ug/kg	5000	<100000	<74000	<77000	<160000		+			
Acenaphthylene	ug/kg	5000	<100000	<74000	<77000	<160000					

FL 5000 5000 5000 5000 5000 5000 5000 50	001 IWI - 13 Soil 6/24/2002 16:15 50.50 <100000 <100000 <100000 <100000 <250000 <250000 <100000 <100000 <100000 <100000 <250000 <100000 <100000 <100000 <100000 <100000 <100000 <100000 <100000 <100000	16:30 32.72 <74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000	003 IWI - 14 Soil 6/24/2002 17:00 35.44 <77000 <77000 <77000 <77000 <77000 <190000 <190000	904 IWI - 15 Soil 6/24/2002 17:15 68.40 <160000 <160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 5000 12000 12000 5000 5	Soil 6/24/2002 16:15 50.50	Soil 6/24/2002 16:30 32.72 <74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000 <74000	Soil 6/24/2002 17:00 35.44 <77000 <77000 <77000 <77000 <77000 <190000	Soil 6/24/2002 17:15 68.40 <160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 5000 12000 12000 5000 5	Soil 6/24/2002 16:15 50.50	Soil 6/24/2002 16:30 32.72 <74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000 <74000	6/24/2002 17:00 35.44 <77000 <77000 <77000 <77000 <77000 <190000	Soil 6/24/2002 17:15 68.40 <160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 5000 12000 12000 5000 5	6/24/2002 16:15 50.50 <100000 <100000 <100000 <100000 <100000 <250000 <100000 <100000 <100000	6/24/2002 16:30 32.72 <74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000	6/24/2002 17:00 35.44 <77000 <77000 <77000 <77000 <77000 <190000	6/24/2002 17:15 68.40 <160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 5000 12000 12000 5000 5	6/24/2002 16:15 50.50 <100000 <100000 <100000 <100000 <100000 <250000 <100000 <100000 <100000	6/24/2002 16:30 32.72 <74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000	6/24/2002 17:00 35.44 <77000 <77000 <77000 <77000 <77000 <190000	6/24/2002 17:15 68.40 <160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 5000 12000 12000 5000 5	16:15 50.50 <100000 <100000 <100000 <100000 <100000 <250000 <250000 <100000 <100000 <100000 <100000 <100000 <100000	16:30 32.72 <74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000	17:00 35.44 <77000 <77000 <77000 <77000 <77000 <190000	17:15 68.40 <160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 5000 12000 12000 5000 5	50.50 <100000 <100000 <100000 <100000 <100000 <250000 <250000 <100000 <100000 <100000 <100000	32.72 <74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000	<pre>35.44 </pre> <pre><77000 <77000 <77000 <77000 <77000 <77000 <190000</pre>	<160000 <160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 5000 12000 12000 5000 5	<100000 <100000 <100000 <100000 <100000 <100000 <250000 <100000 <100000 <100000	<74000 <74000 <74000 <74000 <74000 <74000 <190000 <74000	<77000 <77000 <77000 <77000 <77000 <77000 <190000	<160000 <160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 5000 12000 12000 5000 5	<100000 <100000 <100000 <100000 <100000 <250000 <100000 <100000	<74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000	<77000 <77000 <77000 <77000 <77000 <190000	<160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 12000 12000 5000 5	<100000 <100000 <100000 <100000 <100000 <250000 <100000 <100000	<74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000	<77000 <77000 <77000 <77000 <77000 <190000	<160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 5000 12000 12000 5000 5	<100000 <100000 <100000 <100000 <100000 <250000 <100000 <100000	<74000 <74000 <74000 <74000 <74000 <190000 <190000 <74000	<77000 <77000 <77000 <77000 <77000 <190000	<160000 <160000 <160000 <160000 <160000									
5000 5000 5000 5000 12000 12000 5000 500	<100000 <100000 <100000 <100000 <250000 <250000 <100000 <100000	<74000 <74000 <74000 <74000 <190000 <190000 <74000	<77000 <77000 <77000 <77000 <190000	<160000 <160000 <160000 <160000									
5000 5000 5000 12000 12000 5000 5000 500	<100000 <100000 <100000 <250000 <250000 <100000 <100000	<74000 <74000 <74000 <190000 <190000 <74000	<77000 <77000 <77000 <190000	<160000 <160000 <160000				,					
5000 5000 12000 12000 5000 5000 5000 500	<100000 <100000 <250000 <250000 <100000 <100000	<74000 <74000 <190000 <190000 <74000	<77000 <77000 <190000	<160000 <160000			-			1		1	
5000 12000 12000 5000 5000 5000 5000 500	<100000 <250000 <250000 <100000 <100000	<74000 <190000 <190000 <74000	<77000 <190000	<160000		1		1					
12000 12000 5000 5000 5000 5000 5000	<250000 <250000 <100000 <100000	<190000 <190000 <74000	<190000										
12000 5000 5000 5000 5000 5000	<250000 <100000 <100000	<190000 <74000		.400000		1		-			:		
12000 5000 5000 5000 5000 5000	<100000 <100000	<74000	<190000	<400000		1							
5000 5000 5000 5000	<100000 <100000	<74000		<400000				i i	-				
5000 5000 5000			<77000	<160000		!	1				:		
5000 5000	<100000	<74000	<77000	<160000									
5000		<74000	<77000	<160000							······································		
	500000	420000	1500000	620000		!			i				
	<100000	<74000	<77000	<160000			_			1			
5000	<100000	<74000	<77000	<160000									
5000	<100000	<74000	<77000	<160000									
5000	<100000	<74000	<77000	<160000		1				·			_
5000	<100000	<74000	<77000	<160000			1						
5000	<100000	<74000	<77000	<160000				1					
5000	<100000	<74000	<77000	<160000									
5000	<100000	<74000	<77000	<160000		-							
5000	<100000	<74000	<77000	<160000		<u> </u>	1						
5000	<100000	<74000	<77000	<160000			i						
5000	<100000	<74000	<77000	<160000			!					-	
5000	<100000	<74000	<77000	<160000				!					
5000	<100000	<74000	<77000	<160000								7	
5000	<100000	<74000	<77000	<160000									
5000	<100000	<74000	<77000	<160000									
5000	<100000	<74000	<77000	<160000		1							
5000	<100000	<74000	<77000	<160000			!						
5000	<100000	<74000	<77000	<160000		1							
5000	<100000	<74000	<77000	<160000									
5000	<100000	<74000	<77000	<160000		1							
5000	<100000	<74000	<77000	<160000									
5000	<100000	<74000	<77000	<160000									
12000	<250000	<190000	<190000	<400000						1	1		
5000	<100000	<74000	<77000	<160000									
5000	<100000	<74000	<77000	<160000									
5000	<100000	<74000	<77000	<160000									
						·							
	5000 5000 5000 5000 5000 5000 5000 500	5000 <100000	5000 <100000	5000 <100000	5000 <100000	5000 <100000	5000 <100000	5000 <100000	5000 <100000	5000 <100000	5000 <100000	5000 <100000	5000 <100000

Episode #:			8054								1			
Lab Sample ID			001	002	003	004								
Client Sample I D			IWI - 13	IWI - 13D	IWI - 14	IWI - 15								
Sample Matrix			Soil	Soil	Soil	Soil								
Date Sampled			6/24/2002	6/24/2002	6/24/2002	6/24/2002							-	70
Time Sampled			16:15	16:30	17:00	17:15	-							
	Units	RL					-					1		
TCLP SVOA 8270C			†			İ								
1,4-Dichlorobenzene	ug/L	50	<50	<50	<50	<50								
2,4,5-Trichlorophenol	ug/L	120	<120	<120	<120	<120								
2,4,6-Trichlorophenol	ug/L	50	<50	<50	<50	<50		T				:		
2,4-Dinitrotoluene	ug/L	50	<50	<50	<50	<50								
2-Methylphenol	ug/L	50	<50	<50	<50	<50								
3+4-Methylphenol	ug/L	50	<50	<50	<50	<50								
Hexachlorobenzene	ug/L	50	<50	<50	<50	<50				1				
Hexachlorobutadiene	ug/L	50	<50	<50	<50	<50			•					
Hexachloroethane	ug/L	50	<50	<50	<50	<50								
Nitrobenzene	ug/L	50	<50	<50	<50	<50		<u> </u>						
Pentachlorophenol	ug/L	120	<120	<120	<120	<120								
Pyridine	ug/L	50	<50	<50	<50	<50					!			

Weston Solutions In	44 apas) C.	ــــــالک د نزود.					ACE	Technolo	gies Inc.		
750 E Bunker Ct, Suite	500		1				1680	Lake Front	Circle, Ste. B		
Vernon Hills, IL 60061							The '	Voodlands, T	TX 78130		(
Tel: (847) 918-4094	 	ļ				 		: (281) 363-223			6
Fax: (847) 918-4055			 			 		: (281) 298-578		+	
7 444 (5 11) / 20 1000			1				Date:	7/10/2002			
Attn: Ms. Tonya Balla	·		 	Doctioidos	and PCB's				000	 	
Attu. 1415. Tonya Dana			 	resticides	and PCD	5	Projec	Name: IWI/ITA	sco		
Episode #:			8054								
Lab Sample ID			001	002	003	004				-	
Client Sample I D			IWI - 13	IWI - 13D	IWI - 14	IWI - 15					
			1111	100	3001 1-4	100					
Sample Matrix			Soil	Soil	Soil	Soil	1			 	
Date Sampled	·		6/24/2002	6/24/2002	6/24/2002	6/24/2002				1	
Time Sampled			16:15	16:30	17:00	17:15		-		1	
Percent Moisture	 		50.50	32.72	35.44	68.40				1	
	Units	RL				-					
Pesticides								-			
4,4'-DDD	ug/kg	50.0	<100	<74	<77	<160					
4,4'-DDE	ug/kg	50.0	<100	<74	<77	<160	-				
4,4'-DDT	ug/kg	50.0	<100	<74	<77	<160				-	
Aldrin	ug/kg	25.0	<51	<37	<39	<79					
alpha-BHC	ug/kg	25.0	<51	<37	<39	<79		<u> </u>			
beta-BHC	ug/kg	25.0	<51	<37	<39	<79					
Chlordane(Technical) delta-BHC	ug/kg	50.0	<100	<74	<77	<160					
Dieldrin	ug/kg	25.0 50.0	<51 <100	<37 <74	<39 <77	<79 <160					
Endosulfan II	ug/kg ug/kg	50.0	<100	<74		<160					
Endosulfon Sulfate	ug/kg	50.0	<100	<74	 -	<160					
Endosulfon -1	ug/kg	25.0	<51	<37	<39	<79					<u> </u>
Endrin	ug/kg	50.0	<100	<74		<160					
Endrin Aldehyde	ug/kg	50.0	<100	<74	<77	<160		·			
Endrin Ketone	ug/kg	50.0	<100	<74	<77	<160					
gamma-BHC	ug/kg	25.0	<51	<37	<39	<79	į.				
Heptachlor	ug/kg	25.0	<51	<37	<39	<79	-	·-			
Heptachlor Epoxide	ug/kg	25.0	<51	<37	<39	<79					
Methoxychlor	ug/kg	250.0	<510	<370	<390	<790					
Toxaphene	ug/kg	500.0	<1000	<740	<770	<1600				<u> </u>	
PCB's			· · · · · · · · · · · · · · · · · · ·					+-			
Aroclor 1016	ug/kg	500.0	<1000	<740	<770	<1600		1		· 	
Aroclor 1221	ug/kg	500.0	<1000	<740	<770	<1600					
Aroclor 1232	ug/kg	500.0	<1000	<740	<770	<1600					
Aroclor 1242	ug/kg	500.0	<1000	<740	<770	<1600					
Aroclor 1248		500.0	<1000	<740	<770	<1600			<u> </u>		<u></u>
Aroclor 1254	ug/kg	500.0	<1000	<740	<770	<1600		- 		+	
	ug/kg								<u>i</u>		
Aroclor 1260	ug/kg	500.0	<1000	<740	<770	<1600					

Weston Solutions In	1 C.						ACE Technologies Inc.		
750 E Bunker Ct, Suite 500							1680 Lake Front Circle, Ste. B		
Vernon Hills, IL 6006					The Woodlands, TX 78130				
Tel: (847) 918-4094							Phone: (281) 363-2233		
Fax: (847) 918-4055							Fax : (281) 298-5784		
rax. (04/) 710-4033									
							<u>Date:</u> 7/10/02		
Attn: Ms. Tonya Balla			Total TAL Metals & TCLP RCRA Metals			CLP RCRA Metals	Project Name: IWI/ITASCO		
Episode #:	-,		8054						
Lab Sample ID			001	002	003	004			
Client Sample I D			IWI - 13	IW1 - 13D	IWI - 14	IWI - 15			
						 			
Sample Matrix			Soil	Soil	Soil	Soil			
Date Sampled			6/24/02	6/24/02	6/24/02	6/24/02			
Time Sampled			16:15	16:30	17:00	17:15			
Percent Moisture			50.50	32.72	35.44	68.40			
	Units	RL'S	-	<u> </u>		00.10			
Total TAL Metals			 			-			
Aluminum	mg/kg	6.70	3800	3400	6200	12000			
Antimony	m g/kg	4.0	59	26	44	18			
Arsenic	mg/kg	0.67	29.5	15.6	12.2	37.2			
Barium	m g/kg	0.67	1600	980	11000	1300			
Berryllium	m g/kg	0.333	1.94	<0.492	1.3	<1.04			
Cadmium	m çı/kg	0.333	14.7	12.6	26.2	17.6			
Calcium	mg/kg	67.0	28000	22000	21000	58000			
Chromium	mçı/kg	0.67	820	170	400	48 14			
Copper	mg/kg	0.67 1.3	15 180	10 52	5.7 61	150			
Copper Iron	mg/kg	6.7	38000	20000	8700	27000			
Lead	rnçı/kg rnçı/kg	0.667	4240	2840	1850	1870			
Magnesium	mg/kg	67.0	11000	8400	6300	24000			
Manganese	mg/kg	0.67	770	530	260	340			
Mercury	mg/kg	0.03	0.06	0.05	0.12	0.04			
Nickel	mg/kg	1.3	6.2	8.7	7.9	61			
Potassim	mg/kg	67.0	380	300	380	1300			
Selenium	mg/kg	0.467	4.59	3.12	1.39	5.24			
Silver	mç/kg	0.33	2.2	<0.49	1.4	<1.0			
Sodium	mg/kg	67.0	1300	950	1200	2100			
Thalium	mg/kg	0.333	<0.673	<0.492	<0.513	<1.04			
Vanadium	mg/kg	0.67	9	7.9	8 4200	79			
Zinc	rng/kg	1.3	1100	660	1200	2500			
TCLP RCRA Metals									
Arsenic	nig/L	0.05	<0.05	<0.05	<0.05	<0.05			
Barium	nig/L	0.2	2.58	3.36	36.4	2.16			
Cadmium	nig/L	0.05	<0.05	<0.05	0.274	0.074			
Chromium	nig/L	0.1	<0.1	<0.1	0.228	<0.1			
Lead	nig/L	0.05	2.63	4.06	12.7	3.31			
Mercury	nig/L	0.001	<0.001	<0.001	<0.001	<0.001			
Selenium	nig/L	0.05	<0.05	0.062	<0.05	<0.05	· · · · · · · · · · · · · · · · · · ·		
Silver	nig/L	0.1	<0.1	<0.1	<0.1	<0.1	· · · · · · · · · · · · · · · · · · ·		